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A redox-active polymeric network facilitates
electrified reactive-capture electrosynthesis
to multi-carbon products from dilute CO2-
containing streams

Jinqiang Zhang 1,2,3,7, Yufei Cao1,4,7, Pengfei Ou1,7, Geonhui Lee 1,5,7,
Yufei Zhao1,3,7, Shijie Liu 2, Erfan Shirzadi 1, Roham Dorakhan 1, Ke Xie1,
Cong Tian1, Yuanjun Chen 1, Xiaoyan Li 1, Yurou Celine Xiao 2,
Ali Shayesteh Zeraati 2, Rui Kai Miao 2, Sungjin Park1, Colin P. O’Brien 2,
Jun Ge4, Xin Zhou 6, David Sinton 2 & Edward H. Sargent 1

Reactive capture – the integration of CO2 capture with electrochemical
upgrade – offers the prospect of improving overall energy efficiency in
captured-CO2-to-fuels by eliminating the gas-phase CO2 desorption step, and
by further offering a CO2-free gas product stream. Two related challenges limit
the potential impact of electrified reactive capture today: its propensity to
produce lower-value C1 products (carbon products containing one carbon
atom per molecule); and its failure to retain performance when fed dilute
streams (e.g. ~1-10% CO2). We posit that these could be addressed using cat-
alysts that locally concentrate and activate in-situ generated CO2: we integrate
a redox-active polymeric network whose polymer fragments undergo rever-
sible reduction during the electrochemical conversion process, enabling
electron transfer to CO2 molecules generated in-situ from carbonate capture
liquid. We report as a result a 55 ± 5% C2+ (carbon products containing two or
more carbon atoms permolecule) Faradaic efficiency (FE) at 300mA/cm2 in an
electrochemical reactive capture system in which the electrolysis stage is fed
with 1MK2CO3.Weobtain 56 ± 4wt%C2H4 in the product gas stream.Whenwe
use a dilute stream consisting of 1% CO2 in N2 at the KOH capture stage, we
retain the C2+ FE to within 85% (relative) of its value achieved in the case of
pure CO2.

It is of interest to utilize CO2 captured from air, and to upgrade it into
chemicals and fuels through thermochemical or electrochemical
pathways1–4. Reactive capture offers the prospect of reducing the costs
associated with CO2 regeneration, purification, storage, and transport.
It also has the potential to reduce separation costs, since it can be used
to minimize CO2 in the reactor outlet (Fig. S1)5–8.

To date, reactive capture has yielded mostly C1 products such as
CO, formate, and methanol. Multi-carbon products such as ethylene,
ethanol, and propanol are of interest9–13. An additional opportunity for
improvement over prior reactive capture systems resides in their
failure to retain performance when fed dilute e.g. ~1-10 % CO2 streams
due to the high pH of the generated capture liquid.
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Here we focused on the design of catalysts that would prefer C2+

production over hydrogen evolution reaction (HER) and C1 products.
Seeking a system that operated on dilute CO2 streams, we posited that
a catalyst that could trap CO2 molecules to create a locally CO2-rich
environment could also serve to activate the in-situ generated CO2.

A polymeric network consisting of redox-active viologen bran-
ches could be a suitable candidate for this role (Fig. 1a, b)14,15. By
introducing non-conjugated sp3 hybridized methylene groups (-CH2-)
connecting these viologen branches, we would seek to create a three-
dimensional (3D) molecular network capable of trapping CO2 and
transporting electrons to theCO2molecules at reductive potentials16,17.

We studied the new catalyst (PTV andCu ensemble) in the context
of an integrated reactive capture system that utilizes protons from a
bipolar membrane (BPM) to convert carbonate (capture liquid) to CO2

(Figs. S2–3)7,18,19. We synthesized a viologen-based polymer catalyst
(PTV) via a one-step reaction from 1,3,5-tris(bromomethyl)benzene
and 4,4′-dipyridyl in dimethylformamide (DMF) solution at 80 oC,
yielding solid powders (Fig. S4)20. The viologen structures feature
conjugated viologen branches connected to the benzene joints via
non-conjugated -CH2-, forming a stacked 3D polymeric network due to
a steric hindrance effect between the branches (Fig. S5).

Results and discussion
Local enrichment and capture of CO2

Molecular dynamics (MD) simulations show that CO2 is prone to dif-
fuse into the polymeric structure of PTV and become trapped, thus
suppressing its migration outside the network (Fig. 1d, Supplementary
Data 1 and 2). Compared to the distribution of CO2molecules on a bare
Cu surface (Fig. 1c, Supplementary Data 1 and 3), the PTV-loaded
electrode displays a higher CO2 concentration close to the surface of
the electrode (Fig. 1e), suggesting the potential to steer reactions in a
CO2-lean environment (Fig. S6). We were encouraged that the high
local CO2 concentration in the inner Helmholtz plane (IHP) may sup-
press the competing HER and thus promote C2+ production

21,22.

Redox behaviour to activate CO2

The redox properties of the viologen species, studied using cyclic
voltammetry, also suggested its potential to bridge electron transfer to
CO2. As shown in Fig. 1f, the PTV electrode displays two pairs of redox
peaks centered at0.4 V and0V vs. RHE, thefirst and second reduction/
oxidation of the viologen moieties. The redox reactions are highly
reversible and can operate at high current densities over multiple
cycles (Figs. S7–8). When CO2 is introduced to the system, the reduc-
tion peaks of PTV increase accordingly, while the oxidation peaks
remain unchanged. This suggests that the reduced forms of viologen
species in PTV are capable of transferring electrons to CO2 molecules
to initiate the activating process, forming CO2-adduct thereon. The
reduction peaks related to CO2 activation on the PTV catalyst are
shifted to a higher potential, consistent with the lower activation
energy required. The first electron reduction of CO2 molecules is
usually the most energy-consuming step for CO2RR, so this approach
has the potential to support the reduction of CO2 to C2+ products

23.
Using density functional theory (DFT), we calculated the stepwise

reduction potential of CO2 with and without the PTV catalyst. We used
the viologen fragments (PV) in the polymer structure within the
simulation since these are posited to be the active species in PTV. To
ensure that this model aligns with experimental conditions, we have
also considered additional factors, including the polymeric nature of
PTV, the Cu-polymer interface, the role of K+ in the electrolyte, and the
reduction of PTV on the electrode during themodelling. Both the one-
electron and two-electron reduction of PTVoccur (Table S1) before the
one-electron reduction of CO2, enabling viologen to accept electrons
and then transfer them to CO2 (Fig. S9) with relatively low transition
state barriers (TS1 and TS2). The reduction potentials of CO2 show an
improvement of 0.5 V with vs. without the PTV catalyst, i.e., the 1 e−

reduction of CO2 is facilitated by PTV. This suggests themechanism of
Fig. 1g, where first the reduction of the viologen branches occurs,
which then reacts with CO2 molecules to form a PTV-CO2 complex
(Fig. S10), with a free energy of 0.78 eV17,24,25. A subsequent single-
electron reduction of the complex takes place at −1.5 V vs. RHE (com-
pared to -2.0 V of CO2 one-electron reduction potential, Table S1). The
dissociation of the reduced complex produces CO2

− – the first single-
electron reduction product of CO2 at a lower reductive potential. The
released viologen branches are free to interact with CO2 molecules in
the subsequent cycles. The process reduces CO2 to form CO2

− at a
lower potential, and supports their further reduction to C2+ products
when the intermediates are transferred to the Cu.

We carried out in-situ Raman spectroscopy in a CO2 cell: here we
found that the PTV-Cuelectrode shows additional peaks in the rangeof
1250–1750 cm−1. These we assign to vibrational fingerprints of CO2

−

(Figs. 2a, b and S11). The peaks appear in the initial scan and remain
visible even when scanned to the negative potentials, consistent with
an activating role for PTV26,27. The major bands related to surface-
adsorbed *CO at 300 - 500 and 1900 - 2100 cm-1 appear earlier at the
relatively more positive potential on the PTV-Cu electrode, compared
to those on Cu (0.17 V vs. -0.23 V RHE) (Fig. 2a, b)26. This agrees with a
picture in which the activation of CO2 facilitates the conversion to C2+

products at lower potentials when in the presence of PTV. A similar
trend is found with in-situ Fourier transform infrared spectroscopy
(FTIR), where peaks associated with the activated CO2 species around
1643 cm−1 (CO2

− and *COOH) appear earlier on PTV-Cu than on bare Cu
(Figs. 2c, d and S12)28,29.

Performance in electrified reactive capture
We carried out linear sweep voltammetry (LSV, Figs. 3a and S13) with
in-situ differential electrochemical mass spectrometry (DEMS) in the
presence of a CO2 atmosphere. The PTV catalyst (PTV-Cu) exhibits a
lower onset potential compared to the bare Cu electrode (Fig. 3a).
Although similar current densities were achieved on both electrodes,
HER was dominant on the bare Cu electrode. On bare Cu, H2 evolution
occurs at the onset potential; and a higher driving force is required for
C2H4 evolution. On the PTV-Cu electrode, H2 evolution is suppressed
and C2H4 evolution appears earlier, suggesting an improved capability
to convert CO2 and reduce HER kinetics (Figs. S13–14).

We then studied reactive capture in a system in which CO2 is
captured by KOH to form K2CO3. We adopted an interposer design
using mixed cellulose esters (MCE) to create a pH gradient, where the
cation exchange layer/interposer interface is acidic for the reaction
between carbonate ions and protons to generate CO2; while the pH on
the electrode is alkaline (pH> 13) for the conversion of CO2 to C2+

(Figs. S3 and S15)30. The continuous microporous structure allows the
transport of CO2 from the layer to the surface of the electrode to
support conversion reactions.

In a carbonate reduction system with K2CO3 simulating the post-
capture liquid, the PTV-Cu showed an increase in FE to C2+ products
compared to bare Cu, especially on 300mAcm−2, where PTV-Cu shows
FE of 47 ± 3% and bare Cu of 37 ± 3% (Fig. 3b and S16–19). PTV-Cu shows
a decrease in hydrogen evolution, consistent with the capability of PTV
to provide local enrichment of CO2 and to activate CO2 molecules, thus
facilitating conversion to C2+ products and a reduction in the local H2O
presence and activity relevant to HER. Correspondingly, for a given
potential of −5.0V, the PTV-Cu showed a higher Jpartial of 135 ± 7mAcm−2

than the bare Cu electrode at Jpartial of 115 ± 5mAcm−2 at -5.5 V (Fig. 3c).
We then introduced carbon additives to address the low con-

ductivity of PTV.We found carbonblack (CB) nanoparticles to bemore
effective than carbon nanotubes (CNT) and reduced graphene oxide
(rGO) (Fig. S20). We also incorporated a hydrophobic poly(cyclohexyl
methacrylate) (PCHMA) polymeric layer to reduce the water content
on the surface of the electrode (PCHMA-PTV/CB-Cu electrode), this
optimization leading to a peak FEC2+ over 50 % (Figs. 3d and S21–22).
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Fig. 1 | The design of redox-active polymeric catalyst for CO2 reactive capture
by increasing local CO2 concentration and achieving CO2 activation. The
Schematic illustrationofapolymeric viologen catalyst facilitating the conversion to
C2+ products via trapping and activating CO2, and b the redox capability of PTV
molecular structure with viologen branches to activate CO2. c–d. The snapshots of
the MD simulations of the CO2 diffusion patterns in water on c bare Cu electrode

and d PTV-Cu electrode. eDistribution of CO2molecules at the endpoint of theMD
simulation in c and d. f CV curves of PTV-carbon electrode at N2 and CO2 atmo-
sphere, respectively. The electrolyte is 1M K2CO3. The scan rate is 100mV s-1. The
potential is not iR corrected. g DFT calculations of CO2 activation to CO2

- in the
presence of PTV branches. TS is the transition state during the reaction.
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When we further optimized the anolyte and membrane, we reached
FEC2+ of 55 ± 5 % with a lower full cell voltage of -4.1 V (Fig. 3c, d and
S23–25). The outlet had a C2H4 concentration of 56± 4wt%.

Performance in electrified reactive capture with diluted
CO2 stream
We captured CO2 streams (concentrated 100% and diluted 1%) in 1M
KOH for 2 h. Employing capture liquid purged with pure CO2 resulted
in similar performance to the case of 1M K2CO3 (Figs. 4a and S26).
However, when 1%CO2was used, Cu showed a sharp decrease in FEC2+,
an effect we attribute to the lower conversion of KOH into K2CO3

(Fig. S27). PTV-Cumaintained aC2+ FE of 45 ± 5%, by contrast, owing to
a high local CO2 concentration and conversion rate from the capability
of trapping and activating CO2. We demonstrated this by further per-
turbing the capture solution pH, mixing KOH into K2CO3 (Movie S1),
and found PTV-Cu to have a greater tolerance for high pH capture
solution (Figs. 4b and S28).

In the stability test of carbonate reduction at 300mAcm−2

(Fig. S29),we found that theMCE buffer layerwasdamaged by high pH
on the electrode (Figs. S30–34).We replaced theMCE buffer layerwith
polydopamine-coated poly(methyl methacrylate) (PDA-PMMA)
microspheres as the interposer (Figs. S35–38). The stacking of PMMA
spheres generated pores suitable for CO2 transportation and catholyte
flow while the Nafion coating provided a more uniform distribution of
protons (Fig. 4c)31. We constructed a reactive capture system in which
CO2 is continuously captured by OH-, thus balancing pH and forming
carbonate to feed the electrolysis process (Fig. 4d). An integrated

capture-conversion systemoperates continuously for 40 h at a current
density of 300mAcm−2, with stable full cell voltage and C2+ FE ~ 50 %
(Figs. 4e and S39–40).

In summary, a polymeric network of redox-active branches is
designed to facilitate CO2 reactive capture. The polymeric catalyst can
increase local CO2 concentration and activate CO2 during the reduc-
tion process. As a result, the electrochemical performance of CO2

reactive capture from KOH can be significantly enhanced, especially in
a CO2-lean capture environment. The system is able to produce a peak
C2+ FE of 55 ± 5 % at 300mA cm−2 with a 56± 4wt% C2H4 in the outlet
stream. This system is capable of continuously capturing CO2 to be
converted to C2+ products over 40h.

Methods
Material synthesis
Synthesis of PTV. The synthesis of PTV was conducted based on the
previously published ref. 20. Typically, 1,3,5-tris(bromomethyl)ben-
zene (1mmol, Sigma-Aldrich, 97%), 4,4′-bipyridine (1.5mmol, Sigma-
Aldrich), and polyethylene-block-poly(ethylene glycol) (1.0 g, Sigma-
Aldrich, Mn ~ 1,400) were dissolved in 20mLN, N-dimethylformamide
(DMF, Sigma-Aldrich, 99.8%). The solution was kept stirring at 80 oC
for 3 h. The precipitates were filtered and washed with DMF, methanol
(Sigma-Aldrich, 99.8%), and water. The product was dried under
vacuum to give yellowish-brown powders.

Synthesis of PCHMA. The synthesis of PCHMA was achieved by a
polymerization technique on cyclohexyl methacrylate. Typically,

Fig. 2 | Intermediate detection on the PTV-Cu electrode for CO2 activation. a, b. In-situ Raman spectra of a. bare Cu electrode and b PTV-Cu electrode scanning from
0.17 V to -0.63 V vs. RHE. c,d. In-situ FTIR spectra of cbareCu electrode andd PTV-Cu electrode scanning from0.17 to -0.63 V vs. RHE. The electrolytes used are 1MK2CO3.
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cyclohexyl methacrylate (10mmol, Sigma-Aldrich, 97%) and 2,2’-azo-
bisisobutyronitrile (AIBN, 0.2 g, Sigma-Aldrich, 12wt.%)were dissolved
in 6mL acetic acid (Sigma-Aldrich, 99.7%) at 70 oC overnight under N2

atmosphere. The mixture was then added to 50mL diethyl ether
(Sigma-Aldrich, 99.0%) to generate precipitation. The white product
PCHMA was achieved by washing with diethyl ether and drying under
vacuum.

Synthesis of PDA-PMMA microsphere. The synthesis of PDA-
PMMA contains two major steps: the preparation of PMMA micro-
spheres and the coating of the PMMA microspheres with PDA. The
PMMA microspheres are prepared based on the previously published
ref. 32,33. Typically, a solution of 15mL methyl methacrylate (MMA,
Sigma-Aldrich, 99%), 12mg sodium dodecyl sulfate (SDS, Sigma-
Aldrich, 99.0%) as the surfactant, and 116.9mg potassium persulfate
(Sigma-Aldrich, 99.0%) as the initiator in 175mL water was prepared
and kept at 70 oC under N2 and stirring for 4 h. After the solution
turned milky white colloidal solution, it was dried under ambient
conditions.

The coating of PDA to PMMA microspheres was performed by
dispersing 150mg PMMA microspheres and 46mg dopamine (Sigma-
Aldrich) in a Tris buffer (pH = 10, Sigma-Aldrich). A solution of
ammonium persulfate (68.4mg, Sigma-Aldrich, 98.0%) was added
dropwise to the dispersion. The polymerization was performed at
stirring for 24 h. The resulting precipitateswerewashedwithwater and
dried under vacuum. The interlayers were prepared by spraying a
mixture of PDA-PMMA microspheres and Nafion dispersion (1mg/
10μL, Sigma-Aldrich, 5 wt.%) in methanol to the surface of the
electrodes.

Electrode preparation
Cucatalysts (USResearchNanomaterials, Inc.)werepreparedby spray-
coatingCunanoparticle ink onto carbonpaper (FreudenbergH23, Fuel
Cell Store). Cu nanoparticles (80mg) were dispersed in a mixture of
12mL methanol and 160 μL Nafion solution and then sonicated for
3 hours. TheCunanoparticle inkwas spray-coatedon the carbonpaper
with a loading of ~4mg/cm2 and dried under atmospheric conditions.
The Cu catalysts were used for electrochemical characterization
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Fig. 3 | Electrochemical performance of reactive capture to C2+ products with
PTV catalyst. a The LSV curves of bare Cu and PTV-Cu electrodes at a scan rate of
100mV s−1, and the corresponding in-situ DEMS results of H2 evolution. The inset
image is the in-situ DEMS results of C2H4 evolution at the same condition. The
potential is not iR corrected. b Product distribution for the electrochemical con-
version of 1M K2CO3 solution at current densities from 200 to 400mAcm−2 using

bare Cu and PTV-Cu electrodes. c The corresponding full cell j-V curve from the
performance inb andd. Thepotential is not iR corrected.dProductdistribution for
the electrochemical conversionof 1MK2CO3 solution at current densities from200
to 400mAcm−2 with PCHMA-PTV/CB-Cu electrode with alkaline anolyte with BPM
and acidic anolyte with CEM, respectively.

Article https://doi.org/10.1038/s41467-025-58756-9

Nature Communications |         (2025) 16:3553 5

www.nature.com/naturecommunications


for carbonate electrolysis in a membrane electrode assembly
(MEA) cell.

The fabrication of PTV-Cu electrodes was the same as that of
Cu electrodes, with the additional layer of PTV sprayed on the surface
of Cu electrodes. The PTV dispersion was prepared by mixing
PTV and Nafion (1mg/5μL) in methanol. PTV/carbon-Cu electrodes

were prepared by mixing different types of carbon (CB, CNT or rGO)
with PTV (1mg/5mg) through the same procedure. PCHMA-PTV/CB-
Cu electrodes were prepared by spraying an additional layer of
PCHMA on the surface of the PTV/CB-Cu electrodes. The PCHMA
dispersion was prepared by mixing PCHMA and Nafion (1mg/5μL) in
methanol.
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moting in-situCO2 generation.dThe schematic illustration of an integrated system
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Article https://doi.org/10.1038/s41467-025-58756-9

Nature Communications |         (2025) 16:3553 6

www.nature.com/naturecommunications


Characterizations
The morphologies of the materials and electrodes were conducted by
field emission scanning electron microscopy (Hitachi, SU5000).
Infrared spectroscopies were conducted on a Nicolet Magna 6700
FTIR spectrometer. All spectra were obtained using 4 cm-1 resolution
and 64 scans at room temperature.

In-situ Raman measurements were performed using a Renishaw
inVia Raman Microscope (water immersion objective (×63), 785 nm
laser) in a modified flow cell with 1M K2CO3 aqueous solution as the
electrolyte (pH 11.6 ± 0.1). The cell structure is shown in Fig. 41. The
prepared catalytic cathodewasused as theworking electrode, Ag/AgCl
reference electrode (freshly prepared 3M KCl) was used as the refer-
ence electrode, and a platinum coil was used as the counter electrode.
CO2 was used as the reactant gas which was continuously supplied to
the gas chamber during the measurement.

In-situ FTIR measurement was performed on Thermo Nicolet
6700 FTIR with MCT detector in a modified flow cell with 1M K2CO3

aqueous solution as the electrolyte (pH 11.6 ± 0.1). The cell structure is
shown in Fig. 41. The prepared cathode by dropping catalysts disper-
sion on Au substrate was used as the working electrode, Ag/AgCl
reference electrode (freshly prepared 3M KCl) was used as the refer-
ence electrode, and a carbon rod was used as the counter electrode.
CO2 was used as the reactant gas which was continuously supplied to
the gas chamber during the measurement.

In-situ DEMS measurement was performed on a commercial
magnetic sector mass spectrometer (Thermo Fischer) with a specially
designed gas-purging system (CO2 as carrier gas) in a modified flow
cell with 1M K2CO3 aqueous solution as the electrolyte. The cell
structure is shown in Fig. 41. PTFE membrane (LingLu) with a porosity
over 50% and pore diameters less than 20 nm have been used as the
hydrophobicmembrane. Ptwirewasused as the counter electrode and
Ag/AgCl (3MKCl) was used as the reference electrode. The electrolyte
was 1MK2CO3 solution. Theflow rate of purge gaswas set at 1mLmin-1.
The ion current was set at 2000 mA with no corrections.

Electrochemical tests
All the electrochemical tests are performed at room temperature (20-
25 oC). The cyclic voltammetry (CV) tests were carried out using a flow
cell configuration. Nickel foam served as the counter electrode, PTV
electrode as the working electrode, 1M K2CO3 as the electrolyte (pH
11.6 ± 0.1), an Ag/AgCl electrode (freshly prepared 3M KCl) as the
reference, and an anion exchange membrane as the separator. The
measured potentials vs. Ag/AgCl were converted to the reversible
hydrogen electrode (RHE) scale according to the Nernst equation:

ERHE = EAg=AgCl +0:059pH + EO
Ag=AgCl ð1Þ

where ERHE is the converted potential vs. RHE, Eo
Ag/AgCl = 0.197 at 25 °C,

and EAg/AgCl is the experimentally measured potential against Ag/AgCl
reference.

During CV tests, the flow of electrolytes was stopped to eliminate
vortices, ensuring smooth CV curves. Tests were performed under
both N2 and CO2 atmospheres, with varying scan rates. Electro-
chemical performance was evaluated using an electrochemical station
(Autolab PGSTAT204, Metrohm) in an MEA system and a flow cell
system. The All experiments were repeated three times to report the
average and standard error. The electrolysis was held for at least
30min to collect gas and liquid products. For the MEA system with
carbonate electrolysis, the as-prepared electrode was used as the
cathode with mixed cellulose ester (MCE) membrane as the buffer
layer between the cathode and membrane. The anolyte was a 0.5M
H2SO4 solution (pH 0.3 ± 0.05). Nickel foamwas used as the anode for
oxygen evolution reaction (OER) in the BPM system. Titanium foam-
supported iridium oxide (IrOx/Ti) was used as the anode catalyst for
OER in the CEM system. Bipolar membrane was used to separate two

electrodes in the BPM system. Nafion 117 membrane was used to
separate the two electrodes in the CEM system. Thesemembranes are
purchased from fuel cell stores. Nafion 117membranes are treatedwith
sulfuric acid and BPM are treated with 1M KCl solution overnight. The
catholyte and anolyte were circulated using a peristaltic pump. All the
electrolytes are freshly prepared before use. The volume of the elec-
trolytes is 50mL for most tests, and 1 L for the stability tests. We used
mass flow controllers (MFC) purchased from Sierra Instruments to
measure all the gas flow.

The gas-phaseproducts were analyzed using gas chromatography
(GC) (Shimadzu 2014, PerkinElmer Clarus 580) equipped with a ther-
mal conductivity detector (TCD) and a flame ionization detector (FID).
The FEs for gaseous products were calculated as follows:

FE %ð Þ=
NF × ν=60

� �
× y=24:5 × 109
� �

i
× 100% ð2Þ

Where N represents the number of electrons required for products, y
(ppm) represents the volume concentration of the gaseous product, ν
(sccm) represents the measured gas flow rate, i (A) represents the
collected cell current, F is the Faraday constant (96485 Cmol−1).

The liquid phase products were analyzed with a 600MHz
Agilent DD2 1H NMR. All the gas and liquid measurements were repe-
ated independently at least 3 times to report the average and
standard error.

The detection limit of GC for gas-phase products is measured by
varying the concentration of gas in the CO2 stream. ppm level of the
gas-phase product is injected three times. The area of a peak is linearly
correlated to the concentration when the area value is plotted at the y-
axis, and the concentration is at the x-axis. The intercept of the x-axis
represents of detection limits of gas concentration. The detection limit
of CO2 is measured by injecting a different air volume from 1mL to
5mL. The CO2 concentration in the air is assumed at 400 ppm. Two
different CO2 streams have been used for capturing: pure CO2 stream
(100 % CO2) and 1% CO2 mixed with 99% N2 (1 % CO2), which are
realized by using twoMFCs to control the flow rate of CO2 and N2. The
total flow rate of the mixture gas was kept at 20 sccm. The 1M KOH
capture solution volume was 50mL. Themixture gas was kept flowing
into the capture solution for 2 h before being applied for electro-
chemical performance evaluation. We used the same cell setup as the
carbonate reduction in an MEA system with a 1 cm2 electrode.

Calculations
MD simulation. All MD simulations were conducted using the GRO-
MACS 2019.334. Parameters for CO2 and PTV were generated with the
antechamber module of Amber18 using the general Amber force field
(GAFF), with partial charges set to fit the electrostatic potential gen-
erated with B3LYP/6-31 G(d) by RESP35,36. The 12-6 LJ potential para-
meters of Cu were obtained from previous work. Heinz, et al.
presented 12-6 and 9-6 Lennard-Jones (LJ) parameters for several face-
centered cubic metals (Ag, Al, Au, Cu, Ni, Pb, Pd, Pt)37. The perfor-
mance is comparable to tight-binding and embedded atom models
and it has compatibility with widely used force fields. The electrode
surface consists of 8 layers of 30× 26Cu (111) surfacewith 6240 atoms.
The CO2 molecules were initially placed at the top of the box and they
gradually diffused to Cu upper surface. It simulated the process of CO2

generated from the electrolyte and captured by the electrode. The
system was placed in a periodic cubic box of water molecules repre-
sented by the three-point charge TIP3P model. The total system was
energy minimized by a succession of steepest descent and conjugate
gradient methods. Thereafter, it was equilibrated for 100ns at con-
stant temperature (298.15 K) and pressure (1 bar) (NPT). We used
V-rescale thermostat and Parrinello−Rahman barostat to keep the
temperature and pressure constant, respectively38,39. The cutoff radius
for neighbor searching and nonbonded interactions was taken to be
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12 Å, and all bonds were constrained using the LINCS algorithm. All
computed structures in MD simulations were illustrated using
VMD40,41.

DFT calculations. All the calculations were carried out with the
Gaussian 16 package. Geometry optimizations were performed with
M06-2X exchange-correlation functional42. The 6-31 G(d) basis set was
used for all atoms43. Frequency analysis was conducted at the same
level of theory to verify the stationary points to be minima or saddle
points. The single-point energies were computed with M06-2X
/def2tzvp basis sets. To estimate the bulk solvent effects on the reac-
tion, all the structures were optimized in the water solvent with the
polarized continuum model using the integral equation formalism
variant (IEFPCM)44. The relative energies with ZPE corrections and free
energies (at 298.15 K and 1 atm pressure) are in eV. All Computed
structures are illustrated using CYLView. We used the active viologen
fragments in the polymeric structure as the simulation model to sim-
plify the computationalworkload45.We have considered the polymeric
nature of PTV, the Cu-polymer interface, the role of K+ in the electro-
lyte, and the reduction of PTV on the electrode to ensure that this
model aligns with experimental conditions.

Data availability
All data are available in the main text or the supplementary materi-
als. Source data are provided with this paper.
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