
ARTICLE OPEN

Interpretable discovery of semiconductors with machine
learning
Hitarth Choubisa 1,5, Petar Todorović 1,5, Joao M. Pina 1, Darshan H. Parmar 1, Ziliang Li1, Oleksandr Voznyy2,
Isaac Tamblyn3,4✉ and Edward H. Sargent1✉

Machine learning models of material properties accelerate materials discovery, reproducing density functional theory calculated
results at a fraction of the cost1–6. To bridge the gap between theory and experiments, machine learning predictions need to be
distilled in the form of interpretable chemical rules that can be used by experimentalists. Here we develop a framework to address
this gap by combining evolutionary algorithm-powered search with machine-learning surrogate models. We then couple the search
results with supervised learning and statistical testing. This strategy enables the efficient search of a materials space while providing
interpretable design rules. We demonstrate its effectiveness by developing rules for the design of direct bandgap materials, stable
UV emitters, and IR perovskite emitters. Finally, we conclusively show how DARWIN-generated rules are statistically more robust
and applicable to a wide range of applications including the design of UV halide perovskites.
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INTRODUCTION
Inverse materials design, prediction of a structure and composi-
tion exhibiting targeted properties, is used to accelerate materials
discovery for light emission, sensing, lasing, energy harvesting,
and energy storage. Recently, deep learning (DL) models have
predicted the properties of molecular and inorganic crystals7–9.
However, even with a deep learning acceleration of 105 in
predicting properties of materials as compared to a single DFT
calculation (Supplementary Note 1), exploring the compositional
and structural space using existing models remains infeasible:
there are ~107 inorganic ternary10, ~1010 quaternary com-
pounds10,11, and even more variations for alloyed and multinary
compositions12. Therefore, these property prediction models are
usually combined with a search algorithm such as a genetic
algorithm (GA) for materials space search13–15. This enables the
prediction of materials with the optimal set of properties16,17.
However, neither of these components directly enables interpret-
ability and explainability of the behavior of materials and the
properties they exhibit.
The development of methods that are adaptable to different

applications is equally important. For example, an ML model
trained to predict bandgaps of materials can be used to search for
materials that emit across a wide range of wavelengths such as UV
(<400 nm) or IR (>700 nm). An effective interpretability method
should be able to extract design rules for all these applications.
Tools such as GNNExplainer18 explain the origin of candidate
material properties, but they are not efficient at extracting
chemical rules and theories from the trained property prediction
model. Furthermore, such approaches apply to only certain types
of ML methods: for instance, GNNExplainer identifies the subgraph
of the input graph structure to the GNN that is dominating the
prediction by maximizing mutual information between various
possible subgraphs and outcome prediction. GNNExplainer is
effective at explaining outcomes for a well-trained Graph Neural

Network but cannot be applied to neural networks other than
GNNs such as generative models19.
To overcome the challenge of efficient search and interpret-

ability, we sought to develop a machine-learned framework, one
that we term DARWIN: Deep Adaptive Regressive Weighted
Intelligent Network. There are three components to DARWIN: a
surrogate model, a search algorithm, and the means to distill
knowledge in a way that humans can understand. We combine
property prediction models and search algorithms with a
supervised learning component to extract scientific insights. As
part of the approach, we first generate multiple candidates that
meet the desired target properties such as stability and UV
bandgap. We then use statistical techniques and supervised ML to
generate and identify relevant statistically significant chemical
rules (Fig. 1 for a summary of the approach). While the approach
itself does not make any assumptions about the property
prediction model or the search algorithm, we use GNNs as
surrogate models and GA as a search algorithm for demonstration.
This paper is organized as follows: we discuss the three

components of DARWIN: ML surrogate models that predict
material properties using unrelaxed structures, integration of an
evolutionary algorithm, and finally, methods for extracting
interpretable chemical design rules. We demonstrate the practi-
cality of DARWIN through two use cases: the design of stable UV
light-emitting materials and direct bandgap materials.

RESULTS AND DISCUSSION
ML surrogate models
We focus on optoelectronic applications of materials and there-
fore, train ML models for three properties: energy above the hull,
bandgap, and nature of bandgap. Data for energy above the hull
and direct–indirect classification was obtained from the Materials
Project database20,21. We train the bandgap regressor using a
recently published HSE06 xc-functional based dataset22 (refer to
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“Methods” subsection on “Data generation for ML” for more
details; please see Supplementary Fig. 1 for analysis of the data
distribution across training, validation, and testing splits of the
relevant properties and Supplementary Fig. 2 for distribution of
the crystal structures).
We use GCNs for property prediction. GCNs generate a global

representation of the crystal structure from the chemical features
representative of each element at a given node and edge feature
(Fig. 2a, see the “Methods” subsection on “General crystal graph
network structure” for details). Several graph convolutional
network (GCN) architectures6,9 have been reported in the
literature to predict properties based on DFT relaxed structures
but very few have been reported12,23 that predict properties based
on unrelaxed structures, which is necessary to perform high-
throughput screening without performing computationally expen-
sive DFT geometry optimization.
It is worth noting that, in addition to GCNs, recent progress in

predicting material properties has been enabled by the use of
generative models24,25 such as the invertible crystallographic
representation19 and diffusion-based graph generative model26.
Generative models are better at predicting geometry-optimized
structures accurately; it remains to be clarified whether they are
superior in predicting material properties than the feed-forward
ML models. For instance, the most accurate model on Matbench
structure-based property prediction challenges is ALIGNN27, which
is not a generative model. Herein we explore the use of graph
neural networks as property prediction surrogate models. We
suggest that these can potentially be replaced with generative
models; for these become more accurate without change to the
interpretability framework.
To solve this problem, we adapt the MatDeepLearn framework

to search, hyperoptimize and benchmark several existing and new
GCN architectures (refer to Supplementary Table 1 for all models

considered)28. We also compare the performance of various GCNs
against fine-tuning of pre-trained models. We found the most
success in learning the map from unrelaxed initial structures to
energy above hull and bandgaps through fine-tuning the pre-
trained models trained on formation energies obtained from the
open quantum materials database (OQMD)22.
Observations of the training experiments for each target property

(energy above the hull, bandgaps, and direct/indirect nature of
bandgap) are summarized in Supplementary Table 2 and Fig. 2. It can
be observed that fine-tuned GCN models outperform other GCNs in
predicting energy above the hull, bandgaps, and the nature of
bandgaps (direct vs. indirect) from initial structures (Fig. 2). The best
GCN model predicts HSE06 bandgaps with mean absolute errors
(MAE) of 0.35 eV on test data, and energies above hull with MAE of
0.034 eV/atom (Fig. 2b, c) using unrelaxed structures. Our classifier
predicts the direct-indirect nature of the material bandgaps with an
F1-score of 0.76 and 0.84 using initial and relaxed geometries
respectively (Fig. 2d and Supplementary Fig. 3): this value is close to a
previously reported (0.89) study on the direct-indirect classification
that was limited only to the Kesterite family of compounds29.

Evolutionary algorithm for accelerated search in the chemical
space
As the second step of DARWIN, we interface the trained ML
models with a search algorithm30,31 (evolutionary algorithm/EA) to
search through materials space. The fitness function of EA is set as
the weighted sum of the mean squared errors of predicted
bandgap, energy above the hull, and direct–indirect nature
against their desired values. This fitness score is then used to
score the candidates. The bottom half is discarded, and the top
half is replicated but with each corresponding structure receiving
a mutation, generating a new group of candidates to evaluate. We
implement the mutation operation as a random elemental

Fig. 1 Different steps of DARWIN. Input crystals were generated using substitutions in prototype structures and spanned over 7 crystal
systems and 220 space groups. DARWIN uses trained Graph Networks as surrogate models and mutations to find new candidates that meet
the target specifications. Both the negative and positive pools of candidates generated are then characterized using different chemical
featurization and subjected to supervised learning combined with statistical testing. The statistically significant rules derived in this way
enable the discovery of new compounds and uncover new chemical trends which can be intuitively explained to experimentalists.
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substitution of the same oxidation state. This ensures that the
charge neutrality of the structure is maintained.
EA relies on our models to predict the properties of interest and

evaluate the set of candidates for their fit. Experiments show that
mutations alone are enough to direct the search toward the
optimal compositions of the large chemical space allowing us to
skip crossovers as shown by the decreasing loss as generations of
solutions proceeds in time (Fig. 1 for a pictorial representation,
“Methods” subsection “Evolutionary algorithm” for more imple-
mentation details and Supplementary Fig. 4 for loss as a function
of generations).

Interpretability
Although GA combined with a surrogate model can efficiently
search the chemical space and lead us to promising candidates, it
does not on its own provide an intuitive understanding of the
experimental discovery of such materials. The last component of
DARWIN solves this problem by identifying chemical features and
rules that provide physical insights into the origin of properties
that can be consumed by chemists and material scientists in the
lab for the design of new materials. All the candidates generated
by the GA during its run are collected and categorized into two
groups: those that meet the desired target properties and those

Fig. 2 Surrogate models. a Mapping crystals to graph representations through encoding, we train graph neural networks to predict the
desired property—bandgaps, energies, and direct/indirect nature. b Performance of different GCNs in predicting energies above hull to
determine material stability. c Performance of different GCNs in predicting HSE06 exchange-correlation functional calculated bandgaps from
unrelaxed initial structures without DFT relaxation. d Performance of the classifier on direct-indirect classification task using different ML
methods (TL: transfer learning approach used in this study; ‘r-MEGNet’ refers to the MEGNet model trained using relaxed optimized
geometries as a baseline; ‘r-CGCNN’ refers to the CGCNN model trained using relaxed optimized geometries as a baseline). We only report the
best-performing model for relaxed structure predictions out of all those considered (CGCNN, MPNN, SchNet, MEGNet) to setup a robust strong
baseline.
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that do not. Materials in the two groups are featured using several
chemical features and operations on them (Supplementary Note 2
for an exhaustive list of properties and operations) such as the
electronegativity difference between B and X site of ternaries
(AxByXz), (range, standard deviation, mean, sorted-difference) of
electronegativity and elemental chemical properties,
HOMO–LUMO corresponding to all the atoms and band centers.
We train a simpler ML model such as Random Forest to learn the

classification between the two groups using the generated features.
Each feature then acts as a chemical rule and is characterized
through two parameters: its relative importance and its statistical
significance. We demonstrate two paradigms for acquiring impor-
tance: (1) Spearman’s coefficient; (2) permutation importance

obtained using Random Forests. Post assignment of importance,
we identify the statistical significance of each of these chemical rules
using the Kruskal–Wallis H-test (Fig. 1 for the process summary).
Both of these methods are used in tandem to derive scientific

insights. In the following two subsections, we use DARWIN to
solve two problems in material science: (a) design of
direct–indirect bandgap materials and (b) design of stable UV
light emitting direct bandgap materials.

Design of direct–indirect bandgap materials
Origin of the direct–indirect nature of bandgap is of fundamental
importance for a material’s usage in optoelectronics32,33 While a

Fig. 3 Chemical interpretability. a Some relevant and statistically significant (p-value < 0.05) chemical rules generated by DARWIN for the
design of stable direct bandgap p-block semiconductors (Ehull < 0.07 eV/atom). b Some of the relevant and statistically significant (p-
value < 0.05) chemical rules generated by DARWIN for the design of direct bandgap UV halide-based semiconductors (bandgap range:
3.1 ± 0.3 eV, Ehull < 0.07 eV/atom). Here, μ(⋅) represents mean, min ð�Þ represents the minimum, max ð�Þ represents the maximum and σ(⋅)
represents the standard deviation of the quantity enclosed. Np

v is the number of p-valence electrons, Tm is the melting point temperature, C is
the column number in the periodic table, Zm is the Mendeleev number, A is the atomic mass, Rconv is the covalent radius, Nv is the number of
valence electrons, R is the row number in the periodic table and OEDW is the optimal electronegativity difference window.
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recent study34 tried to explore its origin, it was focused just on
binary III–V semiconducting materials.
Here, we extend the criterion and derive chemical rules that

explain the origin of the direct–indirect nature of bandgap across
all stable p-block semiconductors using DARWIN (Fig. 3a). Our
approach identifies that semiconductors composed of higher
atomic mass p-block elements are more likely to exhibit direct
bandgap (elements that have smaller melting temperature Tm
with larger covalent radius Rconv are favorable). Similarly, the more
negative the energy of LUMO among individual atomic orbitals
constituting the chemical compound and the more the number of
p-valence electrons on average, the more likely the compound is
to exhibit direct bandgap and is stable. The former of these two
rules is what has been reported in literature34. We also observe
that as the average electronegativities of the elements increase,
the material tends to be a stable direct bandgap material. Thus,
the chemical insights discovered by DARWIN not only reaffirm one
of the previously reported rules but also provide us with yet
another statistically significant chemical rule.
Using these design rules, we modify some of the indirect

bandgap materials that are widely used in semiconducting and
catalytic applications. To test whether DARWIN-derived rules have
wider application, we show both cation modification and show
mixed anion compounds. We provide a reference that suggests
that the synthesis of such compounds may now be feasible35. The
results are shown in Table 1.

Design of stable UV light emitting direct bandgap materials
Next, we use DARWIN to solve a slightly more complicated multi-
target materials discovery problem: the discovery of stable direct
bandgap UV-light emitting materials (3–4 eV), a vast and relatively
unexplored36 chemical space10,37. Findings from the interpret-
ability analysis, when the search is limited to perovskites-like
structures, reconfirm known predictive descriptors such as the role
of A-site and B-site cations in typical perovskite-based crystals for
stabilities (Supplementary Figs. 5–7).
When the search is extended to all ternary halide-based

compounds, we find several interesting relationships. The features
from Fig. 3b are statistically significant (p-value < 0.05) and allow
us to predict stable UV light-emitting candidates. It is observed
that ΔX–B, the difference between the electronegativity (EN) of the
B-site (the second most metallic element in the composition) and
X-site (most electronegative anion), ranks high and exhibits a small
coefficient of variation (σ /μ < 0.3). Further analysis revealed that
ΔENX–B is within a narrow range (0.84, 1.5) whenever the material
is a stable UV direct bandgap semiconductor. We denote this
specific range as the optimal electronegativity difference window
(OEDW).
The knowledge of OEDW was then conveyed to the experi-

mental collaborator who combined it with in-lab constraints and
factors such as precursor availability, synthesis conditions, and
equipment availability. These factors complemented by limited
research in K/Cu-based systems at that time made us choose
K2CuX3-based systems as ideal and optimal candidates to try
experimentally. K2CuCl3 and K2CuBr3 were experimentally synthe-
sized via spin-coating with an intermediate anti-solvent dripping
step38,39. We found that K2CuCl3 meets the target specifications
with emission below 400 nm (Fig. 5 and Supplementary Fig. 8 for
experimental measurements). K2CuCl3 has also recently been
synthesized independently40. Rb2CuCl3 satisfies the OEDW criter-
ion and a recent independent report on Rb2CuCl3 saw interesting
and encouraging results41. It is worth emphasizing here that
instead of relying purely on search results, DARWIN aims to
express the predictions in a chemical language that speaks to
experimentalists: this enabled us to choose a chemical system that
satisfied chemical constraints, leading to UV emission; and
enabling experimentalists to incorporate chemical knowledge

such as solubility of precursors, temperature parameters that are
otherwise difficult to parameterize, and model using ab-initio
methods.
We also performed DFT simulations to verify the predicted

optical properties of K2CuCl3. The initial structure was obtained by
substituting the prototype structure Eu2CuS3. The initial positions
are then relaxed using GGA xc-functional with an energy
convergence criterion of 0.0001 eV and a maximum force
convergence criterion of 0.01 eV/Å. Simulated and experimental
XRD peaks match indicating that the structures obtained after
structure optimization is close to the one obtained through
experiments (Fig. 4d). Band structures calculations using HSE06
exchange-correlation functional were performed on the relaxed
geometry (Fig. 4a). The results from the E–k plot (Fig. 4b) indicate a
direct bandgap at the Γ-point. Further analysis of the elemental
contributions in the orbitally resolved projected density of states
(PDOS) reveals that the halide species significantly contributes to
the valence band maxima (VBM) of such materials and the
B-cation dominates the conduction band minima (CBM) (Fig. 4b),
thus rationalizing the observation that ΔX–B is a good predictor of
the bandgap. Specifically, it is observed that in K2CuCl3, K+ does
not contribute to the electronic structure and that the strong
orbital interaction of the Cu and Cl species leads to the observed
optical properties40,42.
We also used these rules to propose materials that have not

been synthesized before i.e., not reported in academic papers nor
in materials databases (OQMD, Materials Project, AFLOW). These
materials have been compiled in Table 2 with a more
comprehensive list added as Supplementary Table 1.

Design of stable IR light emitting direct bandgap perovskites
To test the broader application of the approach, we further apply
DARWIN to search for stable direct bandgap IR halide perovskite
materials. We focus on a target direct bandgap of 1.2 eV, for this is
of interest in tandem solar cells43,44. We initialize the search with
halide-based compounds of general formula ABX3 (X= Cl, Br and I;
refer to Methods subsection on Parameters for genetic algorithm
search and optimization of candidates). Results of the interpret-
ability analysis are shown in Fig. 5.
Some of the chemical rules obtained via this analysis simply

reconfirm prior literature. For instance, one of the prominent features

is
P

Tm
maxðRÞ ðTm : melting temperature; R : row number (1–7) in the

periodic table) which shows a negative Spearman correlation and is
statistically significant under the Kruskal–Wallis H-test45. This
indicates that to achieve bandgap with IR emission, the elements
must be heavy, and this is supported by existing literature such as
iodine-based perovskites including MAPbI3 and CsPbI3 having small
bandgaps. The melting point of the metals (TmÞ and the number of
p-valence electrons (Np

v ) appear frequently and are statistically
negatively and positively correlated with the ability to emit in the IR,
respectively. Thus the transition series metals from the periodic table
(rows 4–6 and groups 3–10) are not suitable for IR perovskites.
Existing Sn-, Ge-, and Pb-based small bandgap materials agree with
this picture46,47. The range of the p-valence electrons also is linked to
the IR emission behavior in a statistically significant way. It is also
worth noting that IR emission is also linked to HOMO–LUMO orbital
characteristics of the atomic orbitals constituting the material such
that if both originate from s or p orbitals, it is likely to observe a direct
bandgap in the IR regime. Few known compounds with IR bandgaps
such as CsSnI3 fit the above criterion. These interpretability guidelines
can also be used to modify compounds such that they go closer to
emitting in the IR zone. Some of the stoichiometric and alloyed
compounds designed following DARWIN interpretation rules are
listed in Table 3.
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Ablation experiment
Since there are different components within DARWIN, it is
important to ask if all the components are essential for DARWIN’s
success. We set up an ablation study where we remove the
surrogate model and search algorithm with candidates selected
from Materials Project. We then compare the performance of this

modified setup with DARWIN in developing interpretable chemi-
cal rules for stable UV direct bandgap perovskite materials (
Eg 2 ½2:8 eV; 3:4 eV�) using the correctness and completeness
dimensions of interpretability as proposed by Oviedo et al.48.
Since MP-bandgaps are calculated with PBE xc-functional, they

severely underestimate experimental bandgaps. We fit a linear
scale between MP-bandgaps and experimental bandgaps49 (refer

Fig. 4 Experimental realization of K2CuX3 and computational studies. a Simulated orthorhombic crystal structure (Pnma space group) of
K2CuCl3 illustrating the 1D chains of [CuCl3]

2− separated by K+. b Simulated band structure and Density of States of K2CuCl3 (Refer to
Supplementary Information for similar analysis of K2CuBr3). c The absorption spectrum and PL profiles of K2CuBr3 and K2CuCl3. d Simulated21

and experimental (powder) X-ray diffraction measurements of K2CuBr3 and K2CuCl3.

Table 1. Tuning of indirect bandgap materials to make them direct.

No. Indirect materials Material modulated as per DARWIN-derived rule Outcome

1 SiC Si0.5S0.5C Direct bandgap

2 BN BN11/18Sb7/18 Direct bandgap

3 Al2Te3 AlInTe3 Direct bandgap

4 BP B0.67In0.33P Direct bandgap

5 Si3N4 Si3N2.5F1.5 Direct bandgap

6 InSe In0.75Tl0.25Se Direct bandgap

7 SnS (SnSb)0.5(ClS)0.5 Direct bandgap

8 BiS2 BiS1.15Se0.5F0.35 Direct bandgap

9 BiO2 BiOSe Direct bandgap

10 Ge3N4 Ge2.06Sn0.94N4 Direct bandgap

H. Choubisa et al.
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to Supplementary Note 4 for the equation; Supplementary Fig. 9
for comparison). We then search MP for materials with UV
bandgaps using this linear transformation. We end up with 5
compounds that fit the criterion of having energy-above-hull less
than 0.07 eV/atom and direct UV bandgap. However, with a 10%
margin of error and 95% confidence interval, the recommended
sample size for performing significance analysis (calculate p-
values) is 97 which is 8 times larger than the number of materials
that could be collected from Materials Project (required sample
sizes calculated using power test50). Thus, removing the search
component of DARWIN leads to an inability to calculate statistical
significance due to a lack of promising candidates. Even if the
significance values obtained were correct, the critical feature we
obtained for UV design specifically, OEDW was found to be
statistically insignificant (p-value > 0.05) with a very small Spear-
man correlation of 0.07. On the other hand, OEDW was found to
be statistically significant using DARWIN for UV light-emitting
perovskite design with a Spearman correlation of 0.54 (Fig. 6a).
Both observations indicate that the baseline interpretability
approach fails on the completeness front.
Finally, we train a random forest classifier on the collected data

from MP. The top non-trivial features obtained are neither
statistically nor highly predictive in the larger pool of candidates
that were predicted by the search algorithm and surrogate models
of DARWIN. Within the top 30 chemical rules that were predicted

by this small dataset, 63% of them turned out to be statistically
insignificant (p-value > 0.05) on the larger material candidates
generated by the evolutionary algorithm (Fig. 6b). This means that
relying just on screening MP, in this case, would limit exploration
of candidates and wrong chemical insights. This baseline
approach, therefore, fails both on the correctness and complete-
ness front of interpretability. This shows that it is the combination
of an accurate surrogate model, large candidate pools generated
using a search algorithm, and feature-based interpretability
analysis that makes DARWIN effective for interpretable ML for
materials discovery. For the application cases shown, the approach
not only recovered the known rules for the design of materials but
also discovered new chemical rules. These rules enabled the
discovery of materials that met the design specifications with
human-in-the-loop. The approach, therefore, enables the inter-
pretability of ML-powered material discovery pipelines in addition
to just predictions.

METHODS
Data generation for ML
For predicting the stability and optoelectronic properties of the
materials, we use DFT calculations to get energy above the hull
and bandgaps coupled with the direct/indirect nature of the band
structure. We trained GNNs on energy-above-hull and
direct–indirect data obtained from the Materials Project on about
117,000 and 45,000 compounds, respectively. The total energy
values obtained from the Materials Project are based on the
Perdew–Burke–Ernzerhof exchange-correlation functional which
has been shown to perform satisfactorily for predicting the
stability of the compounds6,51. The list of mp-ids of all the
materials data used for this study is attached as part of the SI. We
remove all the entries from the dataset that have energy above
hull >2 eV/atom since those represent highly unstable compounds
indicating either a very unreasonable geometry or problems with
DFT results. To train the bandgap regressor, we use the open-
source dataset22 on HSE bandgaps. Furthermore, the
direct–indirect classification dataset is unbalanced; therefore, we

Fig. 5 Interpretation analysis for IR emitting perovskite materials. The analysis shows that p-block elements (in addition to halides
themselves) are crucial. This is reflected through both the number of p-valence electrons (Np

v ) as well as the preference for lower melting
points (Tm) of the constituent elements. Furthermore, higher electronegativities (χ) also favor direct bandgap IR emission of halide perovskites
indicating a shift away from d-block transition elements. Furthermore, orbital character (c~ s, p, d, f) also indicates that homo–lumo that have
contributions from s and p-orbitals are more likely to exhibit IR emission.

Table 2. List of promising materials with emissions close to 3.1 eV and
not reported in the literature.

Compound Ehull (eV/atom) Bandgap (eV)

CsGaCl3 0.03 3.47

CsDyS3 0.00 3.10

SrAuI3 0.05 3.10

Yb2I3 0.02 3.05

TmScN3 0.04 3.11
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perform under-sampling and use the balanced subset to train the
models. The initial structures, as referred to here, are procured
using the MPRester API by specifying the property
‘initial_structure’.

General crystal graph network structure
We used the MatDeepLearn28 package combined with PyTorch
framework and PyTorch-Geometric module to build and test the
crystal graphs and implement the GCN models. The method to
encode the crystal structures as graphs has previously been
reported in the literature8,9,52. Crystal structures are represented as
G:= {V, E} where V represents atoms represented as nodes and E
represents the set of edges connecting two atoms with spatial
information. This enables one to represent the 3D geometrical and
stoichiometric information of the crystals as graphs. Please refer to
Supplementary Note 3 for the exhaustive list of hyperparameters
used for the purpose of hyperparameter optimization.
In general, the process can be summarized as follows:
Crystal graphs are fed to the network in batches. We first apply

graph convolution operations to them. Convolution operations on

a node i can be represented as Convðui; uj2N ið Þ
j ; ej2NðiÞij Þ. Several

convolution operations have been proposed in literature9,52,53.
This quantity is then used to update the node representation for

node i as

ui ! f ui; Conv ui ; u
j2N ið Þ
j ; ej2N ið Þ

ij

� �� �
(1)

This convolution operation is repeated depending on the
chosen hyperparameter. Post the convolutions, we perform global
pooling of all node features per graph to obtain a fixed-length
vector representation of the crystal geometries under inspection
(max pooling, min pooling and mean pooling are a few examples).
This is represented as

U ¼ Pooli2V uið Þ (2)

In a generalized framework, this vectorial representation is
further operated upon using one or more dense layers

U ! act A � U þ Bð Þ (3)

where A represents the weights, B represents the biases and act
represents the activation function of a dense layer. Finally, the
output layer has a single node to enable the prediction of desired
properties such as the bandgap or energy above the hull in our
case.
In an untrained GCN, the predicted values differ from the

ground truth significantly. The error is then backpropagated using
a gradient optimizer and all the weights and biases are updated
with every epoch till the prediction error reduces to an acceptable
level. Changing the hyperparameters such as the number of dense
layers, graph convolution layers, pooling type, and optimizer
parameters are some of the ways this is usually done.

Transfer learning
Both the architectures (CGCNN and MEGNet) were first fully
trained on a dataset of 500k formation energies obtained from
OQMD. Post-hyper-parameters optimization, all the convolution
and pooling layers were frozen. The number of frozen dense
layers, learning rate, and batch sizes were treated as a
hyperparameter for transfer learning.

Fig. 6 Comparison of baseline method against DARWIN. a When we compare the OEDW interpretability insight on the smaller data that we
could extract from MP, we find that not only it turns up a very small Spearman correlation but also statistically insignificant. b When
we compare the top-ranked chemical rules of the baseline method (either from Spearman analysis or random forest permutation importance),
we find that the majority of them turn out to be statistically insignificant (p-value > 0.05) on the larger pool of promising candidates generated
by the search algorithm of DARWIN.

Table 3. List of promising materials with emissions close to 1.2 eV and
not reported in the literature.

Final compound Final bandgap (eV)

1 CsGe0.67Sn0.33I3 1.56

2 CsSn0.67Sb0.33I3 1.51

3 CsGaBr3 1.16 (CsGaI3 has lower stability than CsGaBr3)

4 KGaBr3 1.17

5 CsInBr3 1.54
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Evolutionary algorithm
The EA operates on a surrogate model composed of the three
predictive ML models built for the various prediction and
classification tasks. A selection criterion is designed for target
material properties such as the bandgap value and stability. In
general, the multi-step iterative process by which the evolutionary
search is implemented is as follows: (1) initialization of primary
candidates denoted as the initial generation; (2) prediction of
material properties using the ML models; (3) evaluation of the
current generation; (4) selection of the fittest candidates; and (5)
mutations in the selected individuals, and developing a new
generation of candidates.
Over successive iterations, the evolutionary algorithm con-

verges and outputs a set of candidates that are optimal given the
current set of selection parameters.
Initialization: In the initialization step, we select a set of

elements and generate an initial set of candidates based on the
200 crystal structure types and 7 families. We select the bandgap
and energy above the hull which we would like to optimize for
and set these search criteria.
Prediction: Crystal graphs are generated via the aforementioned

process and fed as inputs into the three pre-trained ML models to
obtain prediction values for the bandgap, energy above the hull,
and direct–indirect classification.
Evaluation: We evaluate each individual in the current genera-

tion given the loss metric as shown in the equation below which is
a weighted sum of the squared loss for each individually predicted
property and the target selection values, where λi are normalizing
factors for each loss component. For the selection procedures, we
set all the weights to be equal. We initialize with a population of
20 randomly chosen and substituted prototype structures,
originally obtained from ALOWlib54,55, set the generation limit
threshold at 200.
Selection: Upon evaluating the loss, we rank all individuals by

their loss in the current generation and discard the bottom half
and retain the remaining population.
Mutation: We then proceed to make a mutation on each top-

ranked individual in the population which we define as a single
elemental substitution in the crystal structure with the equivalent
oxidation state to retain structural charge neutrality. The new set
of candidates is then added to the current top-ranked generating
a new population and the process is repeated but now starting at
evaluation. After multiple iterations, the loss has plateaued, and
the EA proposes a set of candidate solutions that ideally match the
initial selection criteria. The proposed crystal structures are then
aggregated and collected to comprise the candidate solutions for
the given target conditions. This process is repeated (100 times in
our experiments) for various selection criteria to span the varied
bandgap range and design a set of candidate solutions for further
analysis and experimental realization.

L¼ λ1 Êgap � Etargetgap

� �2
þ λ2 Êhull < Etargethull

� �2 þ λ3 Êdirect � 1
� �2 (4)

Parameters for genetic algorithm search and optimization of
candidates
All the case studies shown here were performed with the
following set of parameters. The evolutionary algorithm search
was conducted for 50 generations with a population size of 50.
These evolutionary searches were performed 100 times. The best
candidates that meet the threshold requirements were taken as
class 1 whereas the worst-performing candidates were labeled
as class 0. Performance was measured using the loss function as
defined in the “Methods” subsection “Evolutionary algorithm”.

Experimental synthesis—film fabrication
Potassium halide (KX, X= I, Br, Cl), copper halide (CuX, X= I, Br, Cl),
dimethylsulfoxide (DMSO), and dimethylformamide (DMF) were
purchased from Sigma-Aldrich. Chloroform was purchased from
DriSolv. All chemicals were used as received. The precursor
solution was prepared by dissolving stoichiometric quantities of
KX and CuX in a DMSO/DMF (25/75% v/v) solution (0.5 M) under
continuous stirring for 1 h at room temperature. The concentra-
tion of the chloride-based precursor solution (in DMSO/DMF 75/
25% v/v) was limited to 0.2 M due to the low solubility of the
precursors. Glass substrates were O2 plasma-treated to improve
adhesion. The precursor solution was spin-coated onto the
substrates via a two-step process: 1000 rpm for 10 s and
3000 rpm. for 60 s. During the second spin step, 0.5 mL of
chloroform was poured onto the substrate. The films were then
annealed at 110 °C for 10 min. All the samples were prepared in a
glove box with an N2 atmosphere to control the atmospheric
conditions.

Material characterization
X-ray diffractograms were recorded using a Rigaku MiniFlex 600
powder X-ray diffractometer equipped with a NaI scintillation
counter and using monochromatized Cu Kα radiation
(l= 1.5406 Å). UV−Vis absorption was measured using a Perkin
Elmer LAMBDA 950 UV/Vis/NIR spectrometer. PL measurements
were collected using a UV–Vis USB 2000+ spectrometer (Ocean
Optics). The samples were optically excited using a 355 nm
frequency-tripled Nd:YAG laser with a pulse width of 2 ns and a
repetition rate of 100 Hz.
There are some missing peaks in the comparison between

simulated and powder XRD patterns. We attribute the additional
peaks observed in XRD to potentially other remaining lattice
planes which exist in the perfect crystal. As with all experimental
synthesis, it is possible that certain planes were far favorable in the
thin-film fabrication process given the current set of precursor
ratios and reaction conditions. This helps explains the mismatch in
certain small low-intensity planes. At the same time, it is important
to note that neither structures resemble that of the original
precursors used to fabricate them. The simulated data assumes
that the orientation of the crystals is random; however, powder or
thin-film samples would always have preferred orientations. A
case in point is the PXRD pattern of K2CuCl3 in Figs. 1a and S6 of
the study published by Creason et al.56. The latter only showed a
few peaks compared to the former.
The bandgap and PL of K2CuX3 in this paper are different from

other published works (Chem. Mater. 32, 6197−6205 (2020); Org.
Electron. 86, 105903 (2020)). The crystal structures reported in
those works are almost identical to ours—the K2CuX3 is composed
of 1D [CuX3]2− chains separated by K+. However, their optical
characterization is based on single crystals, which may have
significant differences in optical properties compared to our
solution-processed thin films. Overall, we attribute this difference
as a function of the material preparation method which would
also cause a discrepancy regarding the bandgap prediction, and
so the current deviation is acceptable.

DATA AVAILABILITY
Open-source data was obtained from the Materials Project procured using Pymatgen
MPRester API, formation energy data from OQMD, and HSE06 bandgap data from ref. 22.

CODE AVAILABILITY
Model training and hyperparameter optimization was done using MatDeepLearn. All
the necessary codes for the analysis can be found at https://github.com/hitarth64/
DARWIN.
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