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Accelerated discovery of CO2 electrocatalysts 
using active machine learning

Miao Zhong1,2,9, Kevin Tran3,9, Yimeng Min1,9, Chuanhao Wang1,9, Ziyun Wang1,  
Cao-Thang Dinh1, Phil De Luna4,8, Zongqian Yu3, Armin Sedighian Rasouli1, Peter Brodersen5, 
Song Sun6, Oleksandr Voznyy1, Chih-Shan Tan1, Mikhail Askerka1, Fanglin Che1, Min Liu1,  
Ali Seifitokaldani1, Yuanjie Pang1, Shen-Chuan Lo7, Alexander Ip1, Zachary Ulissi3 ✉ &  
Edward H. Sargent1 ✉

The rapid increase in global energy demand and the need to replace carbon dioxide 
(CO2)-emitting fossil fuels with renewable sources have driven interest in chemical 
storage of intermittent solar and wind energy1,2. Particularly attractive is the 
electrochemical reduction of CO2 to chemical feedstocks, which uses both CO2 and 
renewable energy3–8. Copper has been the predominant electrocatalyst for this 
reaction when aiming for more valuable multi-carbon products9–16, and process 
improvements have been particularly notable when targeting ethylene. However, the 
energy efficiency and productivity (current density) achieved so far still fall below the 
values required to produce ethylene at cost-competitive prices. Here we describe 
Cu-Al electrocatalysts, identified using density functional theory calculations in 
combination with active machine learning, that efficiently reduce CO2 to ethylene 
with the highest Faradaic efficiency reported so far. This Faradaic efficiency of over  
80 per cent (compared to about 66 per cent for pure Cu) is achieved at a current 
density of 400 milliamperes per square centimetre (at 1.5 volts versus a reversible 
hydrogen electrode) and a cathodic-side (half-cell) ethylene power conversion 
efficiency of 55 ± 2 per cent at 150 milliamperes per square centimetre. We perform 
computational studies that suggest that the Cu-Al alloys provide multiple sites and 
surface orientations with near-optimal CO binding for both efficient and selective CO2 
reduction17. Furthermore, in situ X-ray absorption measurements reveal that Cu and Al 
enable a favourable Cu coordination environment that enhances C–C dimerization. 
These findings illustrate the value of computation and machine learning in guiding 
the experimental exploration of multi-metallic systems that go beyond the limitations 
of conventional single-metal electrocatalysts.

To accelerate catalyst discovery, we developed a machine-learning- 
accelerated, high-throughput density functional theory (DFT) frame-
work18 to screen materials ab initio. We provided this framework with 
244 different copper-containing intermetallic crystals from The Materi-
als Project25, from which we enumerated 12,229 surfaces and 228,969 
adsorption sites. We then performed DFT simulations on a subset of 
these sites to calculate their CO adsorption energies (Supplementary 
Information). These data were used to train an machine learning model, 
which we used to predict CO adsorption energies on the adsorption 
sites. The framework then combined the machine-learning-predicted 
CO adsorption energies with volcano scaling relationships17 to predict 
the most catalytically active sites, which have CO adsorption energies 
(∆ECO) near to −0.67 eV, a value predicted to produce near-optimal 

activity in the volcano scaling relationship (see Supplementary Infor-
mation and Supplementary Figs. 1, 2 for details on calculating the 
optimal ∆ECO of −0.67 eV). These optimal sites were simulated using 
DFT to provide additional training data for the machine learning 
model. Cycling among DFT simulation, machine learning regression 
and machine learning prioritization yielded an automated framework 
that systematically searched for surfaces and adsorption sites with 
near-optimal CO adsorption energies. In total, the framework car-
ried out about 4,000 DFT simulations, yielding a set of candidates for 
experimental testing.

Of the candidate materials identified, we found Cu-Al to be the 
most promising for active and selective CO2 reduction. We created 
two-dimensional activity and selectivity volcano plots for CO2 reduction 
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(Fig. 1a, b)17,26 (Supplementary Information and Supplementary Fig. 3). 
Figure 1a shows that a CO binding energy near −0.67 eV is required for 
high activity. It also shows that, given a CO binding energy of about 
−0.67 eV, a H binding energy above approximately −0.5 eV is required 
for activity and that a H binding energy above approximately −0.2 eV 
is required for selectivity towards CO2 reduction instead of H2 evolu-
tion (Fig. 1a, b).

Since these criteria were met by multiple copper alloy candidates, 
we pared the list of candidates by visualizing and analysing them in a 
t-SNE diagram19 (Fig. 1c). Each point on this diagram represents one 
adsorption site for which we performed a DFT calculation. Points near 
to one other tend to have similar coordination atoms and surface com-
positions (Supplementary Information). Clusters of sites represent 
therefore different adsorption site archetypes (Fig. 1d). Figure 1c shows 
that Cu-Al exhibits the highest abundance of adsorption sites and site 
types with near-optimal ∆ECO values, suggesting that Cu-Al alloys may 
be active across a relatively wide range of surface compositions and 
site types. The zoomed-in t-SNE diagram with example adsorption 
sites (Fig. 1d) reveals that Al sites tend to bind CO too weakly; Cu sites 
surrounded by mostly Al atoms may bind CO too strongly; and Cu-Al 
bridge sites surrounded mostly by Cu atoms are predicted to be active. 
The low abundance of low ∆ECO sites in Cu-Al alloys also suggests that 
Cu-Al may be resistant to CO over-binding. We conclude that Cu-Al 
alloys with a higher Cu content than Al are of potential interest for 
CO2 reduction.

To test these hypotheses, we prepared experimentally a suite of Cu-Al 
model catalysts: ion-implanted Al-on-Cu and evaporated-and-etched 
Al-on-Cu (see Methods and Supplementary Fig. 4). Each catalyst shows 
a morphology similar to that of an evaporated pure Cu catalyst (Supple-
mentary Figs. 5–7). Compared with the pure Cu catalyst, which attained 
a C2H4 Faradaic efficiency of 35% at a current density of 600 mA cm−2 in a 
1 M KOH electrolyte in a flow-cell configuration (Supplementary Fig. 8), 
both ion-implanted and evaporated-and-etched Al-on-Cu catalysts 
exhibited higher C2H4 Faradaic efficiencies of about 60% under the same 
testing conditions. The CO Faradaic efficiencies on both Cu-Al catalysts 
were suppressed to about 10%, one-third of that obtained using pure Cu 
(Supplementary Fig. 9). Incorporating Al on Cu thus increased selectiv-
ity towards C2H4. Al-on-Cu catalysts maintained about 60% C2H4 over 
5 h. The Tafel slopes of C2H4 production (Supplementary Fig. 9) for pure 
Cu, ion-implanted, and evaporated-and-etched Al-on-Cu catalysts are 
180, 147 and 145 mV per decade, respectively, further highlighting the 
faster C–C dimerization kinetics with Al-on-Cu catalysts.

To estimate quantitatively the amount of Al incorporated near the 
Cu surface, we used surface-sensitive Auger electron spectroscopic 
analysis (Supplementary Figs. 10, 11). This method provides compo-
sitional information about the top 1–3 nm of the samples and does so 
over a relatively large area (100 μm2 in our studies)20. We estimated 
that the molar concentrations of Al on surfaces are 4.5% and 25% for 
the ion-implanted and evaporated-and-etched Al-on-Cu, respectively. 
Scanning electron microscopy (SEM) and X-ray spectroscopy analyses 
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Fig. 1 | Screening of Cu and Cu based compounds using computational 
methods. a, A two-dimensional activity volcano plot for CO2 reduction. TOF, 
turnover frequency. b, A two-dimensional selectivity volcano plot for CO2 
reduction. CO and H adsorption energies in panels a and b were calculated 
using DFT. Yellow data points are average adsorption energies of 
monometallics; green data points are average adsorption energies of copper 
alloys; and magenta data points are average, low-coverage adsorption energies 

of Cu-Al surfaces. c, t-SNE19 representation of approximately 4,000 adsorption 
sites on which we performed DFT calculations with Cu-containing alloys. The 
Cu-Al clusters are labelled numerically. d, Representative coordination sites for 
each of the clusters labelled in the t-SNE diagram. Each site archetype is labelled 
by the stoichiometric balance of the surface, that is, Al-heavy, Cu-heavy or 
balanced, and the binding site of the surface.
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confirmed no major change of morphologies or Al concentrations 
for the ion-implanted and evaporated-and-etched Al-on-Cu samples 
before and after 5 h of CO2 reduction (Supplementary Figs. 6, 7, 12–15). 
(See Supplementary Information and Supplementary Figs. 16–19 for 
detailed operating stability information.) Pourbaix diagrams21 (Sup-
plementary Fig. 20) show that both Cu and Al are cathodically protected 
at potentials more negative than their oxidation potentials of −1.4 V 
versus a reversible hydrogen electrode (RHE) in a pH 14 electrolyte.

We sought therefore to develop a further optimized Cu-Al catalyst. 
We explored both thermal evaporation and co-sputtering followed by 
chemical etching to synthesize de-alloyed nanoporous Cu-Al catalysts 
(Supplementary Information). As shown in SEM and high-angle angular 
dark field-scanning transmission electron microscopy (HAADF-STEM) 
images (Fig. 2b and Supplementary Fig. 21), a nanoporous structure 
with pore sizes of 5–20 nm was formed. Compared to ion-implanted and 
evaporated-and-etched Al-on-Cu catalysts, the de-alloyed nanoporous 
Cu-Al catalysts may offer a higher geometric density of catalytically 
active sites for adsorption and electroreduction of CO2. After 5 h of CO2 
electroreduction at a current density of 600 mA cm−2, the grain size 
increased, potentially owing to surface reconstruction of Cu and Al in 
the electrolyte during the reaction (Fig. 2b). Energy-dispersive X-ray 
spectroscopy analyses in transmission electron microscopy (TEM) and 
SEM, electron energy loss spectroscopy (EELS) spectra, and elemental 
mapping in STEM indicated a homogeneous distribution of Al and Cu 
in de-alloyed catalysts before and also after 5 h of reaction (Fig. 2c and 
Supplementary Figs. 22–25). We performed HAADF-STEM analysis and 
found that Cu (111) and (200) facets were observed with interplanar 
spacings of 0.211 nm and 0.182 nm (Supplementary Fig. 26). Auger 
electron spectroscopic analysis revealed about 9% Al on the surface 
following the reaction (Supplementary Figs. 27 and 28).

Given the presence of Cu (111) and (100) surfaces, we used the 
machine learning model and DFT calculations to analyse how the ratio 
of Al to Cu on these surfaces affects ∆ECO. First, we enumerated (using 
Delaunay triangulation22) the range of adsorption sites on the Cu (111) 
surfaces having different Al concentrations; and then predicted ∆ECO for 

these sites using the machine learning model, thus creating a distribu-
tion of ∆ECO values. We repeated this for the Cu (100) surfaces at dif-
ferent Al concentrations. The resulting distributions (Supplementary 
Fig. 29) show that adding about 12% Al to the Cu (111) surface maximizes 
the density of sites with ∆ECO values near the optimum of −0.67 eV and 
that adding 4–12% Al maximizes the density of sites optimal for the Cu 
(100) surface.

We carried out DFT calculations over the best machine-learning- 
predicted structures to characterize the changes in reaction energies 
in the major steps during CO2 reduction. The reaction energy in the 
rate-determining step of C–C bond-making12 decreased from 1.4 eV 
to 0.6 eV on Cu (111) and from 0.6 eV to 0.4 eV on Cu (100) with the 
benefit of Al incorporation (Supplementary Figs. 30–33). The DFT 
results show that the reaction energy of the C–C coupling step (the 
rate-determining step in the electrochemical CO2-to-C2 conversion) 
is lower for the Cu-Al surfaces compared to that for the correspond-
ing pure Cu surfaces. The DFT results further showed that the reac-
tion energy for forming HO(CH)CH, an intermediate of ethanol23, was 
higher than that for forming CCH, an intermediate of C2H4 (ref. 23) with 
Al-containing Cu (Supplementary Fig. 34). Water near the Al atoms 
may assist the reduction of HOCCH to CCH instead of hydrogenation 
of HOCCH to HO(CH)CH23. Thus, the alcohol was suppressed and C2H4 
production was promoted.

We then systematically evaluated the CO2 electroreduction perfor-
mance of the de-alloyed Cu-Al catalysts on carbon-based gas diffusion 
layer (C-GDL) substrates with about 10% Al at the surfaces at current 
densities of 200–800 mA cm−2 in 1 M KOH in flow cells (Fig. 3a and 3b). 
To quantify the Faradaic efficiencies for each product, we carried out 
CO2 electroreduction in the chronopotentiometry mode. As shown 
in Fig. 3b, we achieved C2H4 Faradaic efficiency of 80% at a current 
density of 600 mA cm−2. This is a twofold increase compared to the 
35% Faradaic efficiency of pure Cu measured under the same condi-
tions. A CO2-to-C2H4 half-cell power conversion efficiency (PCE) in a 
full-cell CO2 + H2O-to-C2H4 + O2 reaction (half-cell C2H4 PCE) of 34% 
was achieved (Fig. 3d), which is similar to the previously published 
highest half-cell C2H4 PCE of about 30% using a plasma-activated cop-
per electrocatalyst13 with a C2H4 Faradaic efficiency of 60%. This prior 
work has a much lower current density of around 12 mA cm−2 in the 
same electrolyte. An average C2H4 Faradaic efficiency of 75 ± 4% was 
obtained over 17 de-alloyed distinct Cu-Al on C-GDL samples (about 
10% Al on the surfaces) at a current density of 600 mA cm−2. Overall C2+ 
(multi-carbon product) production Faradaic efficiency was 85–90% 
when we used the de-alloyed Cu-Al catalyst, higher than the 55–60% 
using the flat Cu catalyst (Fig. 3c and Supplementary Fig. 9).

We further designed control catalysts—nanoporous Cu on C-GDL with 
a very low amount of Al on the surface and having similar nanoporosity 
to that of the de-alloyed Cu-Al catalyst—to clarify the role of morphol-
ogy (see Methods, Supplementary Information and Supplementary 
Figs. 35–36). Auger electron spectroscopy analysis revealed that surface 
Al was a low 2–3% (Supplementary Fig. 37). The C2H4 Faradaic efficiency 
was decreased to 53% at the same current of 600 mA cm−2 (Fig. 3b and 
Supplementary Fig. 38).

The Cu-Al on C-GDL catalysts exhibited stable potentials between 
−1.8 V and −2.1 V versus RHE and a C2H4 Faradaic efficiency of 75% over 5 h 
of continuous operation at 600 mA cm−2 (Supplementary Fig. 39). After 
5 h, the C-GDL gradually lost its hydrophobicity and became flooded 
with 1 M KOH electrolyte3. CO2 could therefore no longer diffuse to the 
catalyst surface for CO2 reduction.

To improve device stability, we fabricated de-alloyed Cu-Al catalysts 
on polytetrafluoroethylene (PTFE) substrates whose hydrophobic-
ity is stable over extended operation in a strong alkaline electrolyte3 
(Supplementary Information, and Supplementary Figs. 21, 40 and 
41). Carbon nanoparticles/graphite were coated on the de-alloyed 
Cu-Al surface to create a sandwich structure that would distribute the  
current uniformly over the catalyst to stabilize its surface during  
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Fig. 2 | Schematic and characterization of de-alloyed Cu-Al catalyst.  
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for CO2 electroreduction. b, SEM and HAADF-STEM images of de-alloyed Cu-Al 
catalyst before (left) and after (right) CO2 electroreduction. The scale bars for 
the SEM images are 500 nm (top left) and 200 nm (top right). The scale bars  
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reaction3. As shown in Fig. 4b, c and Supplementary Fig. 42, we achieved 
C2H4 Faradaic efficiencies over 80% in 1 M KOH at a current density 
of 400 mA cm−2. Commercial electrolysers require current densities 
exceeding 0.2 A cm−2 for capital costs to be acceptable33. Compared 
to the previous best3, we achieved a 2.8× advance in cathodic PCE at 
400 mA cm−2 using Cu-Al. We demonstrated over 100 h of stability at 
this best condition (Supplementary Figs. 64, 65 and 67).

To improve the overall energy conversion efficiency, we studied Cu-Al 
performance under different pH conditions27. Experimentally, we found 
that 3 M KOH (pH 14.5) allowed us to reach 48–52% half-cell C2H4 PCE at 
a current density of 150 mA cm−2 and was stable over 50 h (Fig. 4b, d). We 
then optimized the cation concentration by adding an additional 3 M KI 
into the electrolyte. KI was chosen because the K+ cation and I− anion are 
known to increase CO2 reduction activity by accelerating the hydrogena-
tion of the key adsorbed CO intermediate3,28. This further diminished the 
CO Faradaic efficiency to below 0.3% and reduced H2 production by 3%, 
increasing the C2H4 Faradaic efficiency to 73 ± 4%. As a result, we achieved 
a 55 ± 2% half-cell C2H4 PCE (over ten distinct samples) at 150 mA cm−2 
(Fig. 4b, Supplementary Figs. 43 and 63). Note that the cathodic-side 
half-cell PCE captures the cathodic CO2 reduction performance only, and 
it also does not depend on the location of the reference potential (versus 
RHE or versus a standard hydrogen electrode, SHE; see the potential 
diagram in Supplementary Fig. 63). Therefore, the half-cell PCE is useful 
to compare the energy efficiency on one side of a full-cell reaction30–32. 
This energy conversion efficiency was stable over 50 h of CO2 reduction 
operation. The improved half-cell C2H4 PCE in 3 M KOH and 3 M KI elec-
trolytes may benefit from at least one of the following contributions: (1) 
Al as modulator with Cu to create more active CO2 reduction sites, (2) the 
highly nanotextured catalyst surface29, (3) the electrolyte effect from OH−, 
K+ and I−, all of which are known to increase CO2 reduction activity3,27,28.

We compare the performance of the de-alloyed Cu-Al/PTFE catalyst 
with that of the abrupt-interface Cu/PTFE catalyst3 under identical 
CO2 electrolysis conditions. The de-alloyed Cu-Al/PTFE catalyst shows 

improved Faradaic efficiency and half-cell C2H4 PCE under all measured 
conditions (Supplementary Figs. 64, 65). We note that optimization 
of electrolysis conditions is crucial to enable Cu-Al to achieve its best 
CO2-to-C2H4 performance. We also plot the performance of the Cu-Al cat-
alyst compared with that of the previous most efficient abrupt-interface 
Cu catalyst3 in the reported techno-economic analysis (Supplementary 
Fig. 66). The Cu-Al catalyst brings the performance into the break-even 
region; this is an improvement on access to only the below-break-even 
region in the previous most efficient C2H4 electroproduction results.

No obvious leaching of Al and Cu into the solution was observed via 
inductively coupled plasma atomic emission spectroscopy (ICP-AES) 
analysis (Supplementary Fig. 44). The concentrations of Cu and Al at 
time zero are the Cu and Al concentrations in the KOH electrolyte with-
out performing CO2 electrolysis. Therefore, the detected small amount 
of Cu and Al in the solutions are impurities from KOH catholyte, which 
also shows no major change during the reaction, indicating a stable 
electrolysis system. We further confirmed that the assumed dissolved 
amounts of Cu and Al from Cu-Al to solution is far below 1% compared 
to impurity levels in the solution (Supplementary Information).

To investigate the Cu-Al catalyst further, we performed in situ  
synchrotron X-ray absorption near-edge structure (XANES) analysis 
under the same testing conditions (see Supplementary Information and 
Supplementary Fig. 45). Cu-O bonding was observed via both ex situ 
and in situ XANES analyses with the de-alloyed Cu-Al catalyst before, 
during and after the reaction24. We used DFT to analyse the reaction 
energy changes when O is placed on the top surface or in the subsurface 
of the machine learning-predicted Cu-Al models. The reaction energies 
in the rate-determining steps in the CO2 reduction are lower with O in 
the Cu-Al compared to that of pure Cu (Supplementary Figs. 46–61 and 
Supplementary Tables 1–8). The XANES spectra of Al in the Cu-Al sam-
ple before and after the reaction are shown in Supplementary Fig. 62.

To conclude, we have developed a Cu-Al catalyst for active and  
selective CO2 electroreduction to C2H4. We demonstrate the  
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prediction of promising electrocatalysts by combining vol-
cano relationships, DFT and active machine learning to optimize 
catalyst performance. The findings suggest avenues towards 
multi-metal catalysts that outperform single-component cata-
lysts by using an intermediate-binding-optimization and reaction- 
electrolyte-optimization strategy for multi-carbon production via 
CO2 electroreduction.
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Fig. 4 | CO2 electroreduction performance on de-alloyed Cu-Al catalysts on 
PTFE substrates in alkaline electrolytes at different pH values. a, C2H4 
production current density versus potential with de-alloyed Cu-Al in 0.3 M, 1 M, 
3 M and 10 M KOH electrolytes. b, Faradaic efficiencies for gaseous products 
with its corresponding C2H4 power conversion efficiencies of the de-alloyed 
Cu-Al catalysts in the different electrolytes and at different applied current 
densities. The error bars for Faradaic efficiencies measured in 0.3 M and 10 M 
electrolytes represent one standard deviation based on five independent 
samples measured. The error bars for Faradaic efficiencies measured in 1 M 
KOH, 3 M KOH and 3 M KOH + 3 M KI electrolytes represent one standard 
deviation based on ten independent samples measured. c, The CO2 
electroreduction stability of the carbon nanoparticles/de-alloyed Cu-Al/PTFE 
electrode in a 1 M KOH electrolyte at an applied current density of 400 mA cm−2. 
The left axis shows potential (versus RHE; V) versus time (s); the right axis 

shows C2H4 Faradaic efficiency (%) versus time (s). d, The CO2 electroreduction 
stability of the carbon nanoparticles/de-alloyed Cu-Al/PTFE electrode in a 3 M 
KOH electrolyte at an applied current density of 150 mA cm−2. The left axis 
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