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The combustion of fossil fuels, used to 
fulfill approximately 80% of the world’s 
energy needs, is the largest single source 
of rising greenhouse gas emissions and 
global temperature1. The increased use of 
renewable sources of energy, notably solar 
and wind power, is an economically viable 
path towards meeting the climate goals of 
the Paris Agreement2. However, the rate 
at which renewable energy has grown has 
been outpaced by ever-growing energy 
demand, and as a result the fraction of total 
energy produced by renewable sources has 
remained constant since 2000 (ref.3). It is 
thus essential to accelerate the transition 
towards sustainable sources of energy4. 
Achieving this transition requires energy 
technologies, infrastructure and policies 
that enable and promote the harvest, 
storage, conversion and management 
of renewable energy.

In sustainable energy research, suitable 
material candidates (such as photovoltaic 
materials) must first be chosen from 
the combinatorial space of possible 
materials, then synthesized at a high 
enough yield and quality for use in devices 

Next, we discuss closed-loop ML frameworks 
and evaluate the latest advances in applying 
ML to the development of energy harvesting, 
storage and conversion technologies, as well 
as the integration of ML into a smart power 
grid. Finally, we offer an overview of energy 
research areas that stand to benefit further 
from ML.

Performance indicators
Because many reports discuss ML-accelerated 
approaches for materials discovery and 
energy systems management, we posit that 
there should be a consistent baseline from 
which these reports can be compared. For 
energy systems management, performance 
indicators at the device, plant and grid 
levels have been reported11,12, yet there are 
no equivalent counterparts for accelerated 
materials discovery.

The primary goal in materials discovery 
is to develop efficient materials that 
are ready for commercialization. The 
commercialization of a new material 
requires intensive research efforts that 
can span up to two decades: the goal 
of every accelerated approach should 
be to accomplish commercialization 
an order-of-magnitude faster. The 
materials science field can benefit from 
studying the case of vaccine development. 
Historically, new vaccines take 10 years 
from conception to market13. However, 
after the start of the COVID-19 pandemic, 
several companies were able to develop 
and begin releasing vaccines in less 
than a year. This achievement was in 
part due to an unprecedented global 
research intensity, but also to a shift in 
the technology: after a technological 
breakthrough in 2008, the cost of 
sequencing DNA began decreasing 
exponentially14,15, enabling researchers to 
screen orders-of-magnitude more vaccines 
than was previously possible.

ML for energy technologies has much 
in common with ML for other fields like 
biomedicine, sharing the same methodology 
and principles. However, in practice, 
ML models for different technologies are 
exposed to additional unique requirements. 
For example, ML models for medical 
applications usually have complex structures 
that take into account regulatory oversight 
and ensure the safe development, use and 

(such as solar panels). The time frame of a 
representative materials discovery process 
is 15–20 years5,6, leaving considerable room 
for improvement. Furthermore, the devices 
have to be optimized for robustness and 
reproducibility to be incorporated into 
energy systems (such as in solar farms)7, 
where management of energy usage and 
generation patterns is needed to further 
guarantee commercial success.

Here we explore the extent to which 
machine learning (ML) techniques can help 
to address many of these challenges8–10. 
ML models can be used to predict specific 
properties of new materials without the need 
for costly characterization; they can generate 
new material structures with desired 
properties; they can understand patterns 
in renewable energy usage and generation; 
and they can help to inform energy policy 
by optimizing energy management at both 
device and grid levels.

In this Perspective, we introduce 
Acc(X)eleration Performance Indicators 
(XPIs), which can be used to measure the 
effectiveness of platforms developed for 
accelerated energy materials discovery. 
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monitoring of systems, which usually does 
not happen in the energy field16. Moreover, 
data availability varies substantially from 
field to field; biomedical researchers can 
work with a relatively large amount of data 
that energy researchers usually lack. This 
limited data accessibility can constrain the 
usage of sophisticated ML models (such 
as deep learning models) in the energy 
field. However, adaptation has been quick 
in all energy subfields, with a rapidly 
increased number of groups recognizing 
the importance of statistical methods and 
starting to use them for various problems. 
We posit that the use of high-throughput 
experimentation and ML in materials 
discovery workflows can result in 
breakthroughs in accelerating development, 
but the field first needs a set of metrics with 
which ML models can be evaluated and 
compared.

Accelerated materials discovery 
methods should be judged based on the 
time it takes for a new material to be 
commercialized. We recognize that this is 
not a useful metric for new platforms, nor 
is it one that can be used to decide quickly 
which platform is best suited for a particular 
scenario. We therefore propose here XPIs 
that new materials discovery platforms 
should report.

Acceleration factor of new materials, XPI-1
This XPI is evaluated by dividing the 
number of new materials that are 
synthesized and characterized per unit 
time with the accelerated platform by the 
number of materials that are synthesized 
and characterized with traditional methods. 
For example, an acceleration factor of ten 
means that for a given time period, the 
accelerated platform can evaluate ten times 
more materials than a traditional platform. 
For materials with multiple target properties, 
researchers should report the rate-limiting 
acceleration factor.

Number of new materials with threshold 
performance, XPI-2
This XPI tracks the number of new materials 
discovered with an accelerated platform 
that have a performance greater than the 
baseline value. The selection of this baseline 
value is critical: it should be something 
that fairly captures the standard to which 
new materials need to be compared. As 
an example, an accelerated platform that 
seeks to discover new perovskite solar 
cell materials should track the number of 
devices made with new materials that have 
a better performance than the best existing 
solar cell17.

Performance of best material over 
time, XPI-3
This XPI tracks the absolute performance —  
whether it is Faradaic efficiency, power 
conversion efficiency or other — of the 
best material as a function of time. For 
the accelerated framework, the evolution 
of the performance should increase 
faster than the performance obtained 
by traditional methods18.

Repeatability and reproducibility of new 
materials, XPI-4
This XPI seeks to ensure that the new 
materials discovered are consistent and 
repeatable: this is a key consideration to 
screen out materials that would fail at the 
commercialization stage. The performance 
of a new material should not vary by more 
than x% of its mean value (where x is the 
standard error): if it does, this material 
should not be included in either XPI-2 
(number of new materials with threshold 
performance) or XPI-3 (performance of 
best material over time).

Human cost of the accelerated 
platform, XPI-5
This XPI reports the total costs of the 
accelerated platform. This should include 
the total number of researcher hours 
needed to design and order the components 
for the accelerated system, develop the 
programming and robotic infrastructure, 
develop and maintain databases used in the 
system and maintain and run the accelerated 
platform. This metric would provide 
researchers with a realistic estimate of the 
resources required to adapt an accelerated 
platform for their own research.

Use of the XPIs
Each of these XPIs can be measured for 
computational, experimental or integrated 
accelerated systems. Consistently reporting 
each of these XPIs as new accelerated 
platforms are developed will allow 
researchers to evaluate the growth of these 
platforms and will provide a consistent 
metric by which different platforms 
can be compared. As a demonstration, 
we applied the XPIs to evaluate the 
acceleration performance of several 
typical platforms: Edisonian-like trial-test, 
robotic photocatalysis development19 and 
design of a DNA-encoded-library-based 
kinase inhibitor20 (Table 1). To obtain a 
comprehensive performance estimate, 
we define one overall acceleration score 
S adhering to the following rules. The 
dependent acceleration factors (XPI-1 and 
XPI-2), which function in a synergetic 
way, are added together to reflect their 
contribution as a whole. The independent 
acceleration factors (XPI-3, XPI-4 and 
XPI-5), which may function in a reduplicated 
way, are multiplied together to value their 
contributions respectively. As a result, the 
overall acceleration score can be calculated as 
S = (XPI-1 + XPI-2) × XPI-3 × XPI-4 ÷ XPI-5. 
As the reference, the Edisonian-like 
approach has a calculated overall XPIs score 
of around 1, whereas the most advanced 
method, the DNA-encoded-library-based 
drug design, exhibits an overall XPIs score 
of 107. For the sustainability field, the robotic 
photocatalysis platform has an overall XPIs 
score of 105.

For energy systems, the most frequently 
reported XPI is the acceleration factor, in 
part because it is deterministic, but also 

Table 1 | Demonstration of the use of the XPis in evaluating the acceleration 
performance of typical materials development platforms

edisonian-like 
trial-test

robotic 
photocatalysis 
development19

DNa-encoded- 
library-based 
kinase inhibitor 
design20

Acceleration factor of new materials, 
XPI-1 (candidates examined per week)

0–1 ~103 ~105

Number of new materials with threshold 
performance, XPI-2

0–1 ~102 ~101

Performance of best material over time, 
XPI-3 (times of increment)

~1× ~5× ~101×

Repeatability and reproducibility of new 
materials, XPI-4 (percentage of success)

≤100% 100% 100%

Human cost of the accelerated platform, 
XPI-5 (percentage of the amount 
demanded by the trial-test method)

100% ~6%a 10%b

Overall acceleration score, S ~1 ~105 ~107

XPIs, Acc(X)eleration Performance Indicators. aRequired half a day of initiation for 8 days of unattended 
running19. bValue is a rough estimate.
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because it is easy to calculate at the end 
of the development of a workflow. In most 
cases, we expect that authors report the 
acceleration factor only after completing 
the development of the platform. 
Reporting the other suggested XPIs will 
provide researchers with a better sense of 
both the time and human resources required 
to develop the platform until it is ready 
for publication. Moving forward, we hope 
that other researchers adopt the XPIs — or 
other similar metrics — to allow for fair and 
consistent comparison between the different 
methods and algorithms that are used to 
accelerate materials discovery.

Closed-loop ML for materials discovery
The traditional approach to materials 
discovery is often Edisonian-like, relying 
on trial and error to develop materials with 
specific properties. First, a target application 
is identified, and a starting pool of possible 
candidates is selected (Fig. 1a). The materials 
are then synthesized and incorporated into a 
device or system to measure their properties. 
These results are then used to establish 
empirical structure–property relationships, 
which guide the next round of synthesis and 
testing. This slow process goes through as 
many iterations as required and each cycle 
can take several years to complete.

A computation-driven, high-throughput 
screening strategy (Fig. 1b) offers a faster 

turnaround. To explore the overall vast 
chemical space (~1060 possibilities), 
human intuition and expertise can be 
used to create a library with a substantial 
number of materials of interest (~104). 
Theoretical calculations are carried 
out on these candidates and the top 
performers (~102 candidates) are then 
experimentally verified. With luck, the 
material with the desired functionality 
is ‘discovered’. Otherwise, this process is 
repeated in another region of the chemical 
space. This approach can still be very 
time-consuming and computationally 
expensive and can only sample a small 
region of the chemical space.

ML can substantially increase the 
chemical space sampled, without costing 
extra time and effort. ML is data-driven, 
screening datasets to detect patterns, 
which are the physical laws that govern 
the system. In this case, these laws 
correspond to materials structure–property 
relationships. This workflow involves 
high-throughput virtual screening (Fig. 1c) 
and begins by selecting a larger region 
(~106) of the chemical space of possibilities 
using human intuition and expertise. 
Theoretical calculations are carried out on 
a representative subset (~104 candidates) 
and the results are used for training a 
discriminative ML model. The model can 
then be used to make predictions on the 

other candidates in the overall selected 
chemical space9. The top ~102 candidates 
are experimentally verified, and the 
results are used to improve the predictive 
capabilities of the model in an iterative loop. 
If the desired material is not ‘discovered’, 
the process is repeated on another region 
of the chemical space.

An improvement on the previous 
approaches is a framework that requires 
limited human intuition or expertise 
to direct the chemical space search: the 
automated virtual screening approach 
(Fig. 1d). To begin with, a region of the 
chemical space is picked at random to 
initiate the process. Thereafter, this process 
is similar to the previous approach, except 
that the computational and experimental 
data is also used to train a generative learning 
model. This generative model solves the 
‘inverse’ problem: given a required property, 
the goal is to predict an ideal structure 
and composition in the chemical space. 
This enables a directed, automated search 
of the chemical space, towards the goal of 
‘discovering’ the ideal material8.

ML for energy
ML has so far been used to accelerate the 
development of materials and devices for 
energy harvesting (photovoltaics), storage 
(batteries) and conversion (electrocatalysis), 
as well as to optimize power grids. Besides 
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all the examples discussed here, we 
summarize the essential concepts in ML 
(Box 1), the grand challenges in sustainable 
materials research (Box 2) and the details of 
key studies (Table 2).

Photovoltaics
ML is accelerating the discovery of new 
optoelectronic materials and devices for 
photovoltaics, but major challenges are still 
associated with each step.

Photovoltaics materials discovery. One 
materials class for which ML has proved 
particularly effective is perovskites, because 
these materials have a vast chemical space 
from which the constituents may be chosen. 
Early representations of perovskite materials 
for ML were atomic-feature representations, 
in which each structure is encoded as a 
fixed-length vector comprised of an average 
of certain atomic properties of the atoms in 
the crystal structure21,22. A similar technique 
was used to predict new lead-free perovskite 
materials with the proper bandgap for solar 
cells23 (Fig. 2a). These representations allowed 
for high accuracy but did not account for 
any spatial relation between atoms24,25. 
Materials systems can also be represented 
as images26 or as graphs27, enabling the 
treatment of systems with diverse number 
of atoms. The latter representation 
is particularly compelling, as perovskites, 
particularly organic–inorganic perovskites, 
have crystal structures that incorporate a 

varying number of atoms, and the organic 
molecules can vary in size.

Although bandgap prediction is 
an important first step, this parameter 
alone is not sufficient to indicate a useful 
optoelectronic material; other parameters, 
including electronic defect density and 
stability, are equally important. Defect 
energies are addressable with computational 
methods, but the calculation of defects in 
structures is extremely computationally 
expensive, which inhibits the generation 
of a dataset of defect energies from 
which an ML model can be trained. To 
expedite the high-throughput calculation 
of defect energies, a Python toolkit has 
been developed28 that will be pivotal in 
building a database of defect energies 
in semiconductors. Researchers can then 
use ML to predict both the formation 
energy of defects and the energy levels 
of these defects. This knowledge will 
ensure that the materials selected from 
high-throughput screening will not only 
have the correct bandgap but will also either 
be defect-tolerant or defect-resistant, finding 
use in commercial optoelectronic devices.

Even without access to a large dataset 
of experimental results, ML can accelerate 
the discovery of optoelectronic materials. 
Using a self-driving laboratory approach, the 
number of experiments required to optimize 
an organic solar cell can be reduced from 
500 to just 60 (ref.29). This robotic synthesis 
method accelerates the learning rate of 

the ML models and drastically reduces the 
cost of the chemicals needed to run the 
optimization.

Solar device structure and fabrication. 
Photovoltaic devices require optimization 
of layers other than the active layer to 
maximize performance. One component is 
the top transparent conductive layer, which 
needs to have both high optical transparency 
and high electronic conductivity30,31. 
A genetic algorithm that optimized the 
topology of a light-trapping structure 
enabled a broadband absorption efficiency 
of 48.1%, which represents a more than 
threefold increase over the Yablonovitch 
limit, the 4n2 factor (where n is the refractive 
index of the material) theoretical limit for 
light trapping in photovoltaics32.

A universal standard irradiance spectrum 
is usually used by researchers to determine 
optimal bandgaps for solar cell operation33. 
However, actual solar irradiance fluctuates 
based on factors such as the position of 
the Sun, atmospheric phenomena and the 
season. ML can reduce yearly spectral sets 
into a few characteristic spectra33, allowing 
for the calculation of optimal bandgaps for 
real-world conditions.

To optimize device fabrication, a CNN 
was used to predict the current–voltage 
characteristics of as-cut Si wafers based 
on their photoluminescence images34. 
Additionally, an artificial neural network 
was used to predict the contact resistance 

Box 1 | essential concepts in Ml

With the availability of large datasets122,125 and increased computing 
power, various machine learning (ML) algorithms have been developed to 
solve diverse problems in energy. Below, we provide a brief overview of 
the types of problem that ML can solve in energy technology, and we 
then summarize the status of ML-driven energy research. More detailed 
information about the nuts and bolts of ML techniques can be found 
in previous reviews173–175.

Property prediction
Supervised learning models are predictive (or discriminative) models 
that are given a datapoint x, and seek to predict a property y (for example, 
the bandgap27) after being trained on a labelled dataset. The property y 
can be either continuous or discrete. These models have been used to 
aid or even replace physical simulations or measurements under certain 
circumstances176,177.

Generative materials design
Unsupervised learning models are generative models that can generate 
or output new examples x′ (such as new molecules104) after being trained 
on an unlabelled dataset. This generation of new examples can be further 
enhanced with additional information (physical properties) to condition 
or bias the generative process, allowing the models to generate examples 
with improved properties and leading to the property-to-structure 
approach called inverse design52,178.

self-driving laboratories
Self-driving or autonomous laboratories19 use ML models to plan and 
perform experiments, including the automation of retrosynthesis analysis 

(such as in reinforcement-learning-aided synthesis planning124,179), 
prediction of reaction products (such as in convolutional neural networks 
(CNNs) for reaction prediction137,138) and reaction condition optimization 
(such as in robotic workflows optimized by active learning19,160,180–183). 
Self-driving laboratories, which use active learning for iterating through 
rounds of synthesis and measurements, are a key component in the 
closed-loop inverse design52.

aiding characterization
ML models have been used to aid the quantitative or qualitative analysis 
of experimental observations and measurements, including assisting 
in the determination of crystal structure from transmission electron 
microscopy images184, identifying coordination environment81 and 
structural transition83 from X-ray absorption spectroscopy and 
inferring crystal symmetry from electron diffraction176.

accelerating theoretical computations
ML models can enable otherwise intractable simulations by reducing 
the computational cost (processor core amount and time) for systems 
with increased length and timescales69,70 and providing potentials and 
functionals for complex interactions68.

Optimizing system management
ML models can aid the management of energy systems at the device or 
grid power level by predicting lifetimes (such as battery life43,44), adapting 
to new loads (such as in long short-term memory for building load 
prediction95) and optimizing performance (such as in reinforcement 
learning for smart grid control94).
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of metallic front contacts for Si solar cells, 
which is critical for the manufacturing 
process35.

Although successful, these studies appear 
to be limited to optimizing structures and 
processes that are already well established. 
We suggest that, in future work, ML could 
be used to augment simulations, such as the 
multiphysics models for solar cells. Design 
of device architecture could begin from 
such simulation models, coupled with ML 
in an iterative process to quickly optimize 
design and reduce computational time and 
cost. In addition, optimal conditions for the 
scaling-up of device area and fabrication 
processes are likely to be very different from 
those for laboratory-scale demonstrations. 
However, determining these optimal 
conditions could be expensive in terms of 
materials cost and time, owing to the need to 
construct much larger devices. In this regard, 
ML, together with the strategic design 
of experiments, could greatly accelerate 
the optimization of process conditions 
(such as the annealing temperatures and 
solvent choice).

Electrochemical energy storage
Electrochemical energy storage is an 
essential component in applications such as 
electric vehicles, consumer electronics and 
stationary power stations. State-of-the-art 
electrochemical energy storage solutions 
have varying efficacy in different 
applications: for example, lithium-ion 
batteries exhibit excellent energy density and 
are widely used in electronics and electric 

vehicles, whereas redox flow batteries 
have drawn substantial attention for use 
in stationary power storage. ML approaches 
have been widely employed in the field 
of batteries, including for the discovery of 
new materials such as solid-state ion 
conductors36–38 (Fig. 2b) and redox active 
electrolytes for redox flow batteries39. ML has 
also aided battery management, for example, 
through state-of-charge determination40, 
state-of-health evaluation41,42 and 
remaining-life prediction43,44.

Electrode and electrolyte materials design. 
Layered oxide materials, such as LiCoO2 
or LiNixMnyCo1-x-yO2, have been used 
extensively as cathode materials for alkali 
metal-ion (Li/Na/K) batteries. However, 
developing new Li-ion battery materials 
with higher operating voltages, enhanced 
energy densities and longer lifetimes is 
of paramount interest. So far, universal 
design principles for new battery materials 
remain undefined, and hence different 
approaches have been explored. Data 
from the Materials Project have been used 
to model the electrode voltage profile 
diagrams for different materials in alkali 
metal-ion batteries (Na and K)45, leading to 
the proposition of 5,000 different electrode 
materials with appropriate moderate 
voltages. ML was also employed to screen 
12,000 candidates for solid Li-ion batteries, 
resulting in the discovery of ten new Li-ion 
conducting materials46,47.

Flow batteries consist of active materials 
dissolved in electrolytes that flow into a 

cell with electrodes that facilitate redox 
reactions. Organic flow batteries are of 
particular interest. In flow batteries, the 
solubility of the active material in the 
electrolyte and the charge/discharge 
stability dictate performance. ML methods 
have explored the chemical space to 
find suitable electrolytes for organic 
redox flow batteries48,49. Furthermore, 
a multi-kernel-ridge regression method 
accelerated the discovery of active organic 
molecules using multiple feature training48. 
This method also helped in predicting the 
solubility dependence of anthraquinone 
molecules with different numbers and 
combinations of sulfonic and hydroxyl 
groups on pH. Future opportunities lie 
in the exploration of large combinatorial 
spaces for the inverse design of high-entropy 
electrodes50 and high-voltage electrolytes51. 
To this end, deep generative models can 
assist the discovery of new materials based 
on the simplified molecular input line 
entry system (SMILES) representation of 
molecules52.

Battery device and stack management. 
A combination of mechanistic and 
semi-empirical models is currently used 
to estimate capacity and power loss in 
lithium-ion batteries. However, the models 
are applicable only to specific failure 
mechanisms or situations and cannot predict 
the lifetimes of batteries at the early stages 
of usage. By contrast, mechanism-agnostic 
models based on ML can accurately predict 
battery cycle life, even at an early stage of a 

Box 2 | Grand challenges in energy materials research

Photovoltaics
Materials

•	Discover non-toxic (Pd- and Cd-free) materials with good 
optoelectronic properties

•	Identify and minimize materials defects in light-absorbing materials

•	Design effective recombination-layer materials for tandem solar cells

•	Develop materials design strategies for long-term operational stability125

•	Develop (hole/electron) transport materials with high carrier mobility125

Devices

•	Optimize cell structure for maximum light absorption and minimum use 
of active materials

•	Tune materials bandgaps for optimal solar-harvesting performance 
under complex operation conditions21,22

Batteries
Materials

•	Develop Earth-abundant cathode materials (Co-free) with high 
reversibility and charge capacity4

•	Design electrolytes with wider electrochemical windows and high 
conductivity4

•	Identify electrolyte systems to boost battery performance and lifetime4

•	Discover new molecules for redox flow batteries with suitable voltage4

Devices

•	Understand correlation between defect growth in battery materials and 
overall degradation process of battery components

•	Tune operando (dis)charging protocol for minimized capacity  
loss, (dis)charging rate and optimal battery life under diversified 
conditions7,53

electrocatalysis
Materials

•	Design materials with optimal adsorption energy for maximized 
catalytic activity60,61

•	Identify and study active sites on catalytic materials58

•	Engineer catalytic materials for extended durability58,60,61

•	Identify a fuller set of materials descriptors that relate to catalytic 
activity60,61

•	Engineer multiple catalytic functionalities into the same material60,61

Devices

•	Design multiscale electrode structures for optimized catalytic activity

•	Correlate atomistic contamination and growth of catalyst particles with 
electrode degradation process

•	Tune operando (dis)charging protocol for minimized capacity loss and 
optimal cell life
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Table 2 | summary of advances in applying Ml to energy harvesting, storage and conversion

Ml approach Main research outcome

Photovoltaics

Bayesian optimization By sampling just 1.8% of the compositional space, the perovskites identified showed a >17-fold stability improvement 
over the original methylammonium lead iodide (MAPbI3) without compromising conversion efficiency160

Random forest classifier Approach reliability was verified by screening ten newly designed donor materials, with good consistency between 
model predictions and experimental outcomes161

ML regression algorithms Six lead-free hybrid perovskites that are stable at room temperature and have suitable bandgaps for solar cells were 
successfully screened out of 5,158 candidates23

Gaussian process 
regression

The ML model was able to make bandgap predictions of elpasolite compounds with similar accuracy to that of high-cost 
computational calculations21

KRR Starting from a set of 1.2 million features, two of them were identified as the most important factors that influence the 
bandgap of double perovskites22

Random forest regressor Compared with the brute-force method, an acceleration factor of 700 was achieved with an experimentally validated 
new perovskite24

DNN-based classifier The ML model could classify compounds ten times faster than human analysis with 90% accuracy, and four lead-free 
layered perovskites were realized experimentally162

CNN-based classifier and 
random forest regressor

CNN-based crystal recognition enabled autonomous characterization of the outcomes of the robotic experiments.  
The regressor predicted the optimal conditions for the synthesis of a new perovskite single crystal163

Bayesian optimization Using an automated experimentation platform with a Bayesian optimization, a four-dimensional parameter space  
of organic photovoltaics blends was mapped and optimized for photostability164

Random forest regressor Essential features were identified and used to screen the most promising thin low-dimensional perovskite capping layer, 
which then led to a many-fold increase in the stability of the state-of-the-art perovskite cell165

Random forest regressor Major patterns regarding materials selection/device structure were captured, which could be used to predict 
perovskite solar cell efficiencies166

Genetic algorithm Experimental samples processed under conditions suggested by the model showed substantial improvements 
in performance167

Batteries

DNNs, KRR and support 
vector machine

The model enabled a reduction in the amount of density functional theory calculations required to explore the chemical 
space. Up to 5,000 candidate materials for Na-ion and K-ion electrodes were identified45

Artificial neural network The model demonstrated accurate estimation of the redox potentials of molecular electrode materials in Li-ion batteries, 
with contribution analysis confirming that electron affinity has the highest contribution to the redox potential168

Gaussian KRR and GBR The method predicted the redox potentials well. The redox potentials could be explained by a small number of features, 
improving the interpretability of the results169

Logistic regression The screening reduced the list of candidate materials from 12,831 down to 21 structures that showed promise as 
electrolytes36

Linear regression and 
support vector machine

The method transferred physical insights onto more generic descriptors, allowing the screening of billions of unknown 
compositions for Li-ion conductivity46

Logistic regression The ML-guided search was 2.7 times more likely to identify fast Li ion conductors, with at least a 44-fold improvement  
of room-temperature Li ion conductivity47

Hierarchical and spectral 
clustering

Ab initio molecular dynamics simulations were used to validate the clustering in Li-containing compounds and identify 
top candidates for high ionic conduction, with 16 new Li-ion conductors discovered38

Artificial neural network Predicted electrode specific resistances were found to agree well with simulated values170

Crystal graph CNN, KRR 
and GBR

The ML model was used to screen over 12,000 inorganic solids for their use as solid electrolytes. Four of these solid 
electrolytes could be used to suppress Li dendrite growth37

Model-free reinforcement 
learning

This method was used to explore trade-offs in the power–performance design space and converge to a better power 
management policy. Experimental results obtained with this technique exhibited a remarkable power reduction 
compared with the existing expert-based power management171

Bagged decision tree The model led to a policy for battery usage optimization that substantially outperformed the leading algorithms.  
The policy was capable of improving and adapting as new data were collected over time172

Electrocatalysis

Random forest regressor 
and extra trees regressor

The framework was able to identify 131 intermetallic surfaces across 54 alloys as promising candidates for CO2 
reduction. Specifically, a Cu–Al alloy catalyst was identified and experimentally verified to selectively convert CO2 
into ethylene with record performance75,76

Neural networks The model reduced the number of intermediate ab initio calculations needed to locate saddle points on the 
potential-energy surface using a nudged elastic band simulation69

Gaussian process regressor The model predicted the most important reaction step that needed to be calculated with the computationally 
demanding electronic structure theory. Using this method, the most likely reaction mechanism for the reaction of 
syngas on Rd(111) was identified70

Neural networks A neural network was able to screen for active sites across a random, disordered nanoparticle surface. The most likely 
active sites for CO2 conversion were identified for Au and Cu nanoparticle systems71,72

CNN, convolutional neural network; DNN, deep neural network; GBR, gradient boosting regression; KRR, kernel ridge regression; ML, machine learning.
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battery’s life43. A combined early-prediction 
and Bayesian optimization model has been 
used to rapidly identify the optimal charging 
protocol with the longest cycle life44. ML can 
be used to accelerate the optimization of 
lithium-ion batteries for longer lifetimes53, 
but it remains to be seen whether these 
models can be generalized to different 
battery chemistries54.

ML methods can also predict 
important properties of battery storage 
facilities. A neural network was used to 
predict the charge/discharge profiles in 
two types of stationary battery systems, 
lithium iron phosphate and vanadium 
redox flow batteries55. Battery power 
management techniques must also 
consider the uncertainty and variability 
that arise from both the environment and 
the application. An iterative Q-learning 
(reinforcement learning) method was also 
designed for battery management and 
control in smart residential environments56. 
Given the residential load and the real-time 
electricity rate, the method is effective at 
optimizing battery charging/discharging/idle 
cycles. Discriminative neural network-based 
models can also optimize battery usage in 
electric vehicles57.

Although ML is able to predict the 
lifetime of batteries, the underlying 
degradation mechanisms are difficult to 
identify and correlate to the state of health 
and lifetime. To this end, incorporation 
of domain knowledge into a hybrid 
physics-based ML model can provide 
insight and reduce overfitting53. However, 
incorporating the physics of battery 
degradation processes into a hybrid model 
remains challenging; representation of 

electrode materials that encode both 
compositional and structural information 
is far from trivial. Validation of these 
models also requires the development of 
operando characterization techniques, 
such as liquid-phase transmission electron 
microscopy and ambient-pressure 
X-ray absorption spectroscopy (XAS), 
that reflect true operating conditions 
as closely as possible54. Ideally, these 
characterization techniques should be 
carried out in a high-throughput manner, 
using automated sample changers, for 
example, in order to generate large 
datasets for ML.

Electrocatalysts
Electrocatalysis enables the conversion  
of simple feedstocks (such as water, carbon 
dioxide and nitrogen) into valuable 
chemicals and/or fuels (such as hydrogen, 
hydrocarbons and ammonia), using renewable 
energy as an input58. The reverse reactions 
are also possible in a fuel cell, and hydrogen 
can be consumed to produce electricity59. 
Active and selective electrocatalysts must be 
developed to improve the efficiency of these 
reactions60,61. ML has been used to accelerate 
electrocatalyst development and device 
optimization.

Electrocatalyst materials discovery. The 
most common descriptor of catalytic activity 
is the adsorption energy of intermediates 
on a catalyst61,62. Although these adsorption 
energies can be calculated using density 
functional theory (DFT), catalysts possess 
multiple surface binding sites, each with 
different adsorption energies63. The number 
of possible sites increases dramatically if 

alloys are considered, and thus becomes 
intractable with conventional means64.

DFT calculations are critical for the 
search of electrocatalytic materials65 and 
efforts have been made to accelerate 
the calculations and to reduce their 
computational cost by using surrogate ML 
models66–69. Complex reaction mechanisms 
involving hundreds of possible species and 
intermediates can also be simplified using 
ML, with a surrogate model predicting the 
most important reaction steps and deducing 
the most likely reaction pathways70. ML can 
also be used to screen for active sites across a 
random, disordered nanoparticle surface71,72. 
DFT calculations are performed on only 
a few representative sites, which are then 
used to train a neural network to predict the 
adsorption energies of all active sites.

Catalyst development can benefit from 
high-throughput systems for catalyst 
synthesis and performance evaluation73,74. 
An automatic ML-driven framework was 
developed to screen a large intermetallic 
chemical space for CO2 reduction and 
H2 evolution75. The model predicted the 
adsorption energy of new intermetallic 
systems and DFT was automatically 
performed on the most promising 
candidates to verify the predictions. This 
process went on iteratively in a closed 
feedback loop. 131 intermetallic surfaces 
across 54 alloys were ultimately identified 
as promising candidates for CO2 reduction. 
Experimental validation76 with Cu–Al 
catalysts yielded an unprecedented Faradaic 
efficiency of 80% towards ethylene at a high 
current density of 400 mA cm–2 (Fig. 2c).

Because of the large number of 
properties that electrocatalysts may possess 
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Fig. 2 | examples illustrating the use of Ml techniques for a sustainable energy future. a | Energy harvesting23. b | Energy storage38. c | Energy 
conversion76. d | Energy management93. ICSD, Inorganic Crystal Structure Database; ML, machine learning.
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(such as shape, size and composition), it is 
difficult to do data mining on the literature77. 
Electrocatalyst structures are complex and 
difficult to characterize completely; as a 
result, many properties may not be fully 
characterized by research groups in their 
publications. To avoid situations in which 
potentially promising compositions perform 
poorly as a result of non-ideal synthesis or 
testing conditions, other factors (such as 
current density, particle size and pH value) 
that affect the electrocatalyst performance 
must be kept consistent. New approaches 
such as carbothermal shock synthesis78,79 
may be a promising avenue, owing to its 
propensity to generate uniformly sized and 
shaped alloy nanoparticles, regardless of 
composition.

XAS is a powerful technique, especially 
for in situ measurements, and has been 
widely employed to gain crucial insight 
into the nature of active sites and changes 
in the electrocatalyst over time80. Because 
the data analysis relies heavily on human 
experience and expertise, there has 
been interest in developing ML tools for 
interpreting XAS data81. Improved random 
forest models can predict the Bader charge 
(a good approximation of the total electronic 
charge of an atom) and nearest-neighbour 
distances, crucial factors that influence the 
catalytic properties of the material82. The 
extended X-ray absorption fine structure 
(EXAFS) region of XAS spectra is known 
to contain information on bonding 
environments and coordination numbers. 
Neural networks can be used to automatically 
interpret EXAFS data83, permitting the 
identification of the structure of bimetallic 
nanoparticles using experimental XAS 
data, for example84. Raman and infrared 
spectroscopy are also important tools 
for the mechanistic understanding of 
electrocatalysis. Together with explainable 
artificial intelligence (AI), which can relate the 
results to underlying physics, these analyses 
could be used to discover descriptors 
hidden in spectra that could lead to new 
breakthroughs in electrocatalyst discovery 
and optimization.

Fuel cell and electrolyser device 
management. A fuel cell is an 
electrochemical device that can be used to 
convert the chemical energy of a fuel (such 
as hydrogen) into electrical energy. An 
electrolyser transforms electrical energy into 
chemical energy (such as in water splitting 
to generate hydrogen). ML has been used to 
optimize and manage their performance, 
predict degradation and device lifetime as 
well as detect and diagnose faults. Using a 

hybrid method consisting of an extreme 
learning machine, genetic algorithms 
and wavelet analysis, the degradation in 
proton-exchange membrane fuel cells 
has been predicted85,86. Electrochemical 
impedance measurements used as input 
for an artificial neural network have 
enabled fault detection and isolation in a 
high-temperature stack of proton-exchange 
membrane fuel cells87,88.

ML approaches can also be employed 
to diagnose faults, such as fuel and air 
leakage issues, in solid oxide fuel cell stacks. 
Artificial neural networks can predict 
the performance of solid oxide fuel cells 
under different operating conditions89. In 
addition, ML has been applied to optimize 
the performance of solid oxide electrolysers, 
for CO2/H2O reduction90, and chloralkali 
electrolysers91.

In the future, the use of ML for fuel cells 
could be combined with multiscale modelling 
to improve their design, for example to 
minimize Ohmic losses and optimize 
catalyst loading. For practical applications, 
fuel cells may be subject to fluctuations in 
energy output requirements (for example, 
when used in vehicles). ML models could 
be used to determine the effects of such 
fluctuations on the long-term durability 
and performance of fuel cells, similar to 
what has been done for predicting the 
state of health and lifetime for batteries. 
Furthermore, it remains to be seen whether 
the ML techniques for fuel cells can be 
easily generalized to electrolysers and vice 
versa, using transfer learning for example, 
given that they are essentially reactions 
in reverse.

Smart power grids
A power grid is responsible for delivering 
electrical energy from producers (such as 
power plants and solar farms) to consumers 
(such as homes and offices). However, 
energy fluctuations from intermittent 
renewable energy generators can render the 
grid vulnerable92. ML algorithms can be used 
to optimize the automatic generation control 
of power grids, which controls the power 
output of multiple generators in an energy 
system. For example, when a relaxed deep 
learning model was used as a unified 
timescale controller for the automatic 
generation control unit, the total operational 
cost was reduced by up to 80% compared 
with traditional heuristic control strategies93 
(Fig. 2d). A smart generation control 
strategy based on multi-agent reinforcement 
learning was found to improve the control 
performance by around 10% compared with 
other ML algorithms94.

Accurate demand and load prediction 
can support decision-making operations in 
energy systems for proper load scheduling 
and power allocation. Multiple ML 
methods have been proposed to precisely 
predict the demand load: for example, 
long short-term memory was used to 
successfully and accurately predict hourly 
building load95. Short-term load forecasting 
of diverse customers (such as retail 
businesses) using a deep neural network and 
cross-building energy demand forecasting 
using a deep belief network have also been 
demonstrated effectively96,97.

Demand-side management consists of 
a set of mechanisms that shape consumer 
electricity consumption by dynamically 
adjusting the price of electricity. These 
include reducing (peak shaving), 
increasing (load growth) and rescheduling 
(load shifting) the energy demand, 
which allows for flexible balancing of 
renewable electricity generation and 
load98. A reinforcement-learning-based 
algorithm resulted in substantial cost 
reduction for both the service provider 
and customer99. A decentralized 
learning-based residential demand 
scheduling technique successfully shifted 
up to 35% of the energy demand to periods 
of high wind availability, substantially 
saving power costs compared with the 
unscheduled energy demand scenario100. 
Load forecasting using a multi-agent 
approach integrates load prediction with 
reinforcement learning algorithms to shift 
energy usage (for example, to different 
electrical devices in a household) for its 
optimization101. This approach reduced 
peak usage by more than 30% and 
increased off-peak usage by 50%, reducing 
the cost and energy losses associated with 
energy storage.

Opportunities for ML in renewable 
energy
ML provides the opportunity to enable 
substantial further advances in different 
areas of the energy materials field, which 
share similar materials-related challenges 
(Fig. 3). There are also grand challenges for 
ML application in smart grid and policy 
optimization.

Materials with novel geometries
A ML representation is effective when it 
captures the inherent properties of the 
system (such as its physical symmetries) 
and can be utilized in downstream ancillary 
tasks, such as transfer learning to new 
predictive tasks, building new knowledge 
using visualization or attribution and 
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generating similar data distributions with 
generative models102.

For materials, the inputs are molecules or 
crystal structures whose physical properties 
are modelled by the Schrödinger equation. 
Designing a general representation of 
materials that reflects these properties is an 
ongoing research problem. For molecular 
systems, several representations have been 
used successfully, including fingerprints103, 
SMILES104, self-referencing embedded 
strings (SELFIES)105 and graphs106–108. 
Representing crystalline materials has the 
added complexity of needing to incorporate 
periodicity in the representation. Methods 
like the smooth overlap of atomic positions109, 
Voronoi tessellation110,111, diffraction 
images112, multi-perspective fingerprints113 
and graph-based algorithms27,114 have been 
suggested, but typically lack the capability 
for structure reconstruction.

Complex structural systems found 
in energy materials present additional 
modelling challenges (Fig. 3a): a large number 
of atoms (such as in reticular frameworks 
or polymers), specific symmetries (such as 

in molecules with a particular space group 
and for reticular frameworks belonging to a 
certain topology), atomic disordering, partial 
occupancy, or amorphous phases (leading to 
an enormous combinatorial space), defects 
and dislocations (such as interfaces and 
grain boundaries) and low-dimensionality 
materials (as in nanoparticles). Reduction 
approximations alleviate the first issue 
(using, for example, RFcode for reticular 
framework representation)8, but the 
remaining several problems warrant 
intensive future research efforts.

Self-supervised learning, which seeks 
to lever large amounts of synthetic labels 
and tasks to continue learning without 
experimental labels115, multi-task learning116, 
in which multiple material properties can 
be modelled jointly to exploit correlation 
structure between properties, and 
meta-learning117, which looks at strategies 
that allow models to perform better in new 
datasets or in out-of-distribution data, all 
offer avenues to build better representations. 
On the modelling front, new advances 
in attention mechanisms118,119, graph 

neural networks120 and equivariant neural 
networks121 expand our range of tools with 
which to model interactions and expected 
symmetries.

Robust predictive models
Predictive models are the first step when 
building a pipeline that seeks materials 
with desired properties. A key component 
for building these models is training 
data; more data will often translate into 
better-performing models, which in turn 
will translate into better accuracy in the 
prediction of new materials. Deep learning 
models tend to scale more favourably with 
dataset size than traditional ML approaches 
(such as random forests). Dataset quality 
is also essential. However, experiments are 
usually conducted under diverse conditions 
with large variation in untracked variables 
(Fig. 3b). Additionally, public datasets are 
more likely to suffer from publication bias, 
because negative results are less likely to 
be published even though they are just as 
important as positive results when training 
statistical models122.
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Addressing these issues require 
transparency and standardization of the 
experimental data reported in the literature. 
Text and natural language processing 
strategies could then be employed to 
extract data from the literature77. Data 
should be reported with the belief that it will 
eventually be consolidated in a database, 
such as the MatD3 database123. Autonomous 
laboratory techniques will help to address 
this issue19,124. Structured property databases 
such as the Materials Project122 and the 
Harvard Clean Energy Project125 can also 
provide a large amount of data. Additionally, 
different energy fields — energy storage, 
harvesting and conversion — should 
converge upon a standard and uniform 
way to report data. This standard should 
be continuously updated; as researchers 
continue to learn about the systems they are 
studying, conditions that were previously 
thought to be unimportant will become 
relevant.

New modelling approaches that work 
in low-data regimes, such as data-efficient 
models, dataset-building strategies 
(active sampling)126 and data-augmentation 
techniques, are also important127. 
Uncertainty quantification, data efficiency, 
interpretability and regularization are 
important considerations that improve 
the robustness of ML models. These 
considerations relate to the notion of 
generalizability: predictions should 
generalize to a new class of materials that 
is out of the distribution of the original 
dataset. Researchers can attempt to model 
how far away new data points are from the 
training set128 or the variability in predicted 
labels with uncertainty quantification129. 
Neural networks are a flexible model class, 
and often models can be underspecified130. 
Incorporating regularization, inductive 
biases or priors can boost the credibility 
of a model. Another way to create 
trustable models could be to enhance 

the interpretability of ML algorithms by 
deriving feature relevance and scoring their 
importance131. This strategy could help to 
identify potential chemically meaningful 
features and form a starting point for 
understanding latent factors that dominate 
material properties. These techniques 
can also identify the presence of model 
bias and overfitting, as well as improving 
generalization and performance132–134.

Stable and synthesizable new materials
The formation energy of a compound 
is used to estimate its stability and 
synthesizability135,136. Although negative 
values usually correspond to stable 
or synthesizable compounds, slightly 
positive formation energies below a limit 
lead to metastable phases with unclear 
synthesizability137,138. This is more apparent 
when investigating unexplored chemical 
spaces with undetermined equilibrium 
ground states; yet often the metastable 

Active learning
Machine learning techniques that can query a user 
interactively to modify its current strategy (that is, label 
an input).

Artificial intelligence
(AI). Theory and development of computer systems that 
exhibit intelligence.

Automatic generation control
A system for adjusting the power output of multiple 
generators at different power plants, in response to 
changes in the load.

Closed-loop approach
A technology development pipeline that incorporates 
automation to go from idea to realization of technology. 
‘Closed’ refers to the concept that the system improves 
with experience and iterations.

Data augmentation
Process of increasing the amount of data through adding 
slightly modified copies or newly created synthetic data 
from existing data.

Deep belief network
A generative graphical model, or alternatively a class of 
deep neural network, composed of multiple layers of 
latent variables, with connections between the layers but 
not between units within each layer.

Deep learning
(DL). Machine learning subfield that is based on neural 
networks with representation learning.

Generalization
The ability to adapt to new, unseen data, drawn 
from the same distribution as the one used to create 
the model.

Generative learning
Machine learning techniques that learn to model the 
data distribution of a dataset and sample new data 
points.

Interpretability
Degree to which a human can understand a model’s 
decision. Interpretability can be used to build trust 
and credibility.

Inverse design
A design method where new materials and compounds 
are ‘reverse-engineered’ simply by inputting a set of 
desired properties and characteristics and then using an 
optimization algorithm to generate a predicted solution.

Long short-term memory
A special kind of recurrent neural networks that are 
capable of selectively remembering patterns for a long 
duration of time.

Machine learning
(ML). Field within artificial intelligence that deals with 
learning algorithms, which improve automatically 
through experience (data).

Multi-agent system
A computerized system composed of multiple 
interacting intelligent agents.

Multi-kernel-ridge regression
The combination of ridge regression (a method of 
estimating the coefficients of multiple-regression models 
in scenarios where the independent variables are highly 
correlated) with multiple kernel techniques.

Multiphysics models
Models that involve the analysis of multiple, 
simultaneous physical phenomena, which can include 
heat transfer, fluid flow, deformation, electromagnetics, 
acoustics and mass transport.

Multiscale modelling
The field of solving problems that have important 
features at multiple scales of time and/or space.

Neural networks
A neural network is composed of parameterized 
and optimizable transformations.

Recurrent neural networks
A class of artificial neural networks where connections 
between nodes form a directed or undirected graph 
along a temporal sequence.

Regularization
Process of incorporating additional information into the 
model to constrain its solution space.

Reinforcement learning
Machine learning techniques that make a sequence 
of decisions to maximize a reward.

Representations
Features used in a representation learning model, 
which transforms inputs into new features for a task.

Retrosynthesis
Technique for solving problems in the planning of 
chemical synthesis.

Robotic workflows
A robotic equipment automated chemical synthesis 
plan.

Screening strategy
Design process composed of several stages where 
materials are iteratively filtered and ranked to arrive 
to a few top candidates.

Supervised learning
Machine learning techniques that involve the usage 
of labelled data.

Transfer learning
Machine learning techniques that adapt a learned 
representation or strategy from one dataset to another.

Uncertainty quantification
Process of evaluating the statistical confidence of model.

Unsupervised learning
Machine learning techniques that learn patterns from 
unlabelled data.
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phases exhibit superior properties, as seen 
in photovoltaics136,139 and ion conductors140, 
for example. It is thus of interest to develop 
a method to evaluate the synthesizability 
of metastable phases (Fig. 3c). Instead of 
estimating the probability that a particular 
phase can be synthesized, one can instead 
evaluate its synthetic complexity using 
ML. In organic chemistry, synthesis 
complexity is evaluated according to the 
accessibility of the phases’ synthesis route141 
or precedent reaction knowledge142. Similar 
methodologies can be applied to the 
inorganic field with the ongoing design of 
automated synthesis-planning algorithms 
for inorganic materials143,144.

Synthesis and evaluation of a new 
material alone does not ensure that material 
will make it to market; material stability is 
a crucial property that takes a long time to 
evaluate. Degradation is a generally complex 
process that occurs through the loss of active 
matter or growth of inactive phases (such 
as the rocksalt phases formed in layered 
Li-ion battery electrodes145 (Fig. 3d) or the 
Pt particle agglomeration in fuel cells146) 
and/or propagation of defects (such as cracks 
in cycled battery electrode147). Microscopies 
such as electron microscopy148 and 
simulations such as continuum mechanics 
modelling149 are often used to investigate 
growth and propagation dynamics 
(that is, phase boundary and defect surface 
movements versus time). However, these 
techniques are usually expensive and do not 
allow rapid degradation prediction. Deep 
learning techniques such as convolutional 
neural networks and recurrent neural networks 
may be able to predict the phase 
boundary and/or defect pattern evolution 
under certain conditions after proper 
training150. Similar models can then be 
built to understand multiple degradation 
phenomena and aid the design of materials 
with improved cycle life.

Optimized smart power grids
A promising prospect of ML in smart 
grids is automating the decision-making 
processes that are associated with dynamic 
power supplies to distribute power most 
efficiently (Fig. 3e). Practical deployment 
of ML technologies into physical systems 
remains difficult because of data scarcity and 
the risk-averse mindset of policymakers. The 
collection of and access to large amounts 
of diverse data is challenging owing to 
high cost, long delays and concerns over 
compliance and security151. For instance, to 
capture the variation of renewable resources 
owing to peak or off-peak and seasonal 
attributes, long-term data collections are 

implemented for periods of 24 hours to 
several years152. Furthermore, although ML 
algorithms are ideally supposed to account 
for all uncertainties and unpredictable 
situations in energy systems, the risk-adverse 
mindset in the energy management industry 
means that implementation still relies on 
human decision-making153.

An ML-based framework that involves 
a digital twin of the physical system can 
address these problems154,155. The digital twin 
represents the digitalized cyber models of 
the physical system and can be constructed 
from physical laws and/or ML models 
trained using data sampled from the physical 
system. This approach aims to accurately 
simulate the dynamics of the physical 
system, enabling relatively fast generation 
of large amounts of high-quality synthetic 
data at low cost. Notably, because ML model 
training and validation is performed on the 
digital twin, there is no risk to the actual 
physical system. Based on the prediction 
results, suitable actions can be suggested and 
then implemented in the physical system 
to ensure stability and/or improve system 
operation.

Policy optimization
Finally, research is generally focused on 
one narrow aspect of a larger problem; we 
argue that energy research needs a more 
integrated approach156 (Fig. 3f). Energy policy 
is the manner in which an entity, such as 
the government, addresses its energy issues, 
including conversion, distribution and 
utilization. ML has been used in the fields of 
energy economics finance for performance 
diagnostics (such as for oil wells), energy 
generation (such as wind power) and 
consumption (such as power load) forecasts 
and system lifespan (such as battery cell 
life) and failure (such as grid outage) 
prediction157. They have also been used for 
energy policy analysis and evaluation 
(for example, for estimating energy savings). 
A natural extension of ML models is to 
use them for policy optimization158,159, 
a concept that has not yet seen widespread 
use. We posit that the best energy policies — 
including the deployment of the newly 
discovered materials — can be improved 
and augmented with ML and should be 
discussed in research reporting accelerated 
energy technology platforms.

Conclusions
To summarize, ML has the potential to 
enable breakthroughs in the development 
and deployment of sustainable energy 
techniques. There have been remarkable 
achievements in many areas of energy 

technology, from materials design and 
device management to system deployment. 
ML is particularly well suited to discovering 
new materials, and researchers in the 
field are expecting ML to bring up new 
materials that may revolutionize the energy 
industry. The field is still nascent, but there 
is conclusive evidence that ML is at least 
able to expose the same trends that human 
researchers have noticed over decades of 
research. The ML field itself is still seeing 
rapid development, with new methodologies 
being reported daily. It will take time to 
develop and adopt these methodologies to 
solve specific problems in materials science. 
We believe that for ML to truly accelerate the 
deployment of sustainable energy, it should 
be deployed as a tool, similar to a synthesis 
procedure, characterization equipment or 
control apparatus. Researchers using ML 
to accelerate energy technology discovery 
should judge the success of the method 
primarily on the advances it enables. To this 
end, we have proposed the XPIs and some 
areas in which we hope to see ML deployed.
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