
In the past decade, hybrid organic–inorganic per-
ovskites (HOIPs) have become an important materi-
als family for optoelectronics. Low trap densities1 and 
long carrier-​diffusions lengths2–5 have led to solar cells 
with efficiency above 20%6–9; near-​unity photolumi-
nescence quantum yields and tunable emission have 
enabled high-​performing light-​emitting diodes (LEDs) 
spanning the visible and portions of the near-​infrared 
spectra10–12; and large optical gain has allowed low 
thresholds in both pulsed and continuous-​wave optically 
pumped lasing13–17. With high mobilities18–21 and dielec-
tric constants22, these materials have also been explored 
as photodetectors23,24. In addition, their large Rashba 
splitting25,26 and long spin lifetimes27–29 have motivated 
research into spintronic applications30–32.

HOIPs possess a flexible crystal structure and a tunable 
hybrid organic–inorganic composition. This enables the 
incorporation of chiral ligands33–37, which allow perovskites 
to be used in chiroptoelectronic38,39, ferroelectric40–42  
and chiro-​spintronic43,44 applications.

Chirality and its extension to perovskites
A material is chiral if its mirror image cannot be 
brought to coincide with it45. Chirality is found in the 
l-​configuration of the natural α-​amino acids except gly-
cine and in the d-​configuration of the saccharides and 
saccharide units in cellulose, starch and DNA. In addi-
tion, chiral templates and sites play an important role 
in biological recognition and assembly. The community 
has harnessed this property, for example, in chiral cata-
lysts that are widely employed in asymmetric synthesis 
of pharmaceuticals.

Based on non-​centrosymmetric structures, chiral 
materials can exhibit optical rotation46, circular dichro-
ism47, second-​harmonic generation (SHG)48, piezo-
electricity40, pyroelectricity49, ferroelectricity50 and 
topological quantum properties51. Thus, chiral materials 
have potential for application in chiroptoelectronics, 
including in circularly polarized light (CPL) photode-
tectors52–55, circularly polarized LEDs56–60, bioresponsive 
imaging61–63, 3D displays64,65, as well as applications in 
quantum computing66,67, quantum communication68–70, 
non-​volatile-​memory devices71 and spintronics30,43,44,72 
(Fig. 1).

Chiroptical effects can be reproduced by incor-
porating metasurfaces and optical elements (such as 
quarter-​wave plates); however, some applications require 
chiral materials. Optical elements decrease efficiency, 
and metasurfaces increase the complexity, and often 
cost, of a system. Chiral materials offer an advantage in 
applications requiring small footprints and ease of fabri-
cation. In many of the applications listed above (such as 
on-​chip circularly polarized photodetectors52–55, LEDs73,74 
and polarization-​based memory storage75,76), additional 
elements hinder fabrication and performance; thus, true 
chiral materials are required.

The first demonstration of chirality in HOIPs was a 
1D chiral-​perovskite single crystal in 2003 (ref.33), with 
2D chiral-​perovskite single crystals following in 2006 
(ref.34) (Fig. 2). However, their chiroptical properties were 
not explored initially. Only after breakthroughs in the 
power-​conversion efficiency of perovskite solar cells77,78 
did investigation begin into many aspects of their opti-
cal properties14–16. Chiral perovskites re-​emerged in 
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2017, when the first chiroptical study was performed47. 
Since then, additional chiral HOIPs have been reported, 
including chiral-​perovskite nanocrystals79,80, cogels81, 
nanoplatelets82 and low-​dimensional chiral perovskites83. 
Whereas metal-​free 3D chiral perovskites have been syn-
thesized84, metal-​containing 3D chiral HOIPs have yet to 
be demonstrated, although they have been theoretically 
predicted to be both thermodynamically and kinetically 
stable85.

Chiral perovskites are classified into 65 different 
space groups, known as the Sohncke space groups86, and 
exhibit chiroptical and ferroelectric properties according 
to the Neumann–Curie principle87,88 (Fig. 3). In Box 1, we 
define key terms that are used throughout this Review 
to discuss chiroptical and ferroelectric properties of chi-
ral perovskites (see also Section 1 of the Supplementary 
Information for a more detailed description).

The optical and electronic properties of chiral per-
ovskites have been recently reviewed89; in the present 
Review, we focus on their structure–property relation-
ships. We also discuss the motivation for incorporating 
chiral HOIPs and cover chiroptical effects46,90 and ferro-
electricity50,91, as well as the concepts underlying chiral 
induction (that is, chirality transfer)92,93. We then review 
applications such as circularly polarized photodetec-
tion38, spin manipulation39,83, high-​order nonlinear chi-
roptical effects48,80 and ferroelectricity40,41. We close with 
a forward-​looking perspective on chiral HOIPs.

Design of chiral perovskites
When a perovskite material incorporates chiral organic 
molecules, they can impart their chiral properties to 
it92. This chirality transfer can be mediated through the 
formation of chemical bonds or even through spatial 
interactions between a chiral and an achiral system92,93. 
Table 1 summarizes the different chirality-​transfer 
mechanisms in chiral HOIPs47,82,94. They include: 
ligand-​induced chiral inorganic structure (I, such as in 
chiral-​perovskite single crystals)33,34; chiral distortion of 
the inorganic surface (II, such as in chiral-​perovskite 
nanocrystals)79,80; chiral patterning of the surface lig-
ands95,96 (III); and electronic coupling between the chiral 
organic molecules and the inorganic structure (IV, chiral 
field effect)97,98.

Chirality through chiral ligands
Direct synthesis. Chiral perovskites can be synthe-
sized directly using chiral ligands to introduce chi-
rality (Fig. 4a), enabling 0D, 1D, 2D, quasi-2D and 3D 
chiral HOIPs33,34,83. Low-​dimensional HOIPs contain a 
greater percentage of chiral organic ligands and, thus, 
should exhibit a higher degree of chirality. For exam-
ple, decreasing values of the anisotropy factor gabs were 
observed for quasi-2D perovskites, as the value of 
<n> (the average number of inorganic layers between 
the chiral organic ligands) increased83. To date, only a 
select group of chiral ligands has been employed with  
perovskites (Fig. 4a).

The first chiral HOIP, incorporating the enantio-
meric ligand (S)-​methylbenzylammonium (S-​MBA, 
Fig. 4a) was reported in 2003 (ref.33), and the corre-
sponding 2D chiral HOIP single crystal in 2006 (ref.34). 
Structurally, R(or S)-​MBAPbX3 (X = Cl, Br or I) exhib-
its 1D polymeric face-​sharing structures, whereas  
(R(or S)-MBA)2PbI4 exhibits 2D corner-​sharing lay-
ered structures34 (Fig. 4b). These enantiomers exhibit 
essentially the same cell parameters with mirror con-
figuration and belong to the same Sohncke space group 
of P212121. Chiral HOIPs were then extended to a new 
chiral ligand, 1-​cyclohexylethylammonium (CHEA)99 
(Fig. 4a).

A series of 1D chiral HOIPs emitting white light 
were reported; the emission was attributed to exci-
ton self-​trapping, owing to the quantum confinement 
in low-​dimensional perovskites35,100–102. As a result of 
introducing R-3-​ammoniopiperidin-1-​ium (3APD, 
Fig.  4a) as the chiral source, (R-3APD)PbCl4·H2O 
exhibits tunable emission from blue to yellow under 
different excitation wavelengths, with a high colour 
rendering index of 93.9 (ref.35). Another chloride-​based 
chiral HOIP with R or S-1-(1-​naphthyl)ethylammonium 
(NEA) as the chiral ligand (Fig. 4a) was reported103; the 
resulting (R-​NEA)2Pb4Cl10·2DMF and (S-​NEA)2
Pb4Cl10·2DMF exhibit a 2D layered structure (DMF: 
N,N-​dimethylformamide), and both enantiomers 
belong to the P21 Sohncke space group. Interestingly, 
coordination four, five and six were observed for  
Pb (II) atoms in these 2D chiral HOIPs103. Other 2D 
chiral hybrid organic–inorganic lead perovskites based 
on MPEA48 (β-​methylphenethylammonium, Fig. 4a) and 
CMBA40 (1-(4-​chlorophenyl)ethylammonium, Fig. 4a), 
were also reported recently; we discuss them in the 
sections on nonlinear chiroptical applications and on 
ferroelectrics.

Lead-​free chiral HOIPs based on tin104,105, bismuth37, 
copper106–108, manganese41, cadmium109 and cobalt110 
were also reported, but their chiroptoelectronic and 
chiro-​spintronic properties have not yet been studied.

Post-​synthetic chiral-​ligand exchange. In post-​synthetic 
chiral-​ligand exchange111, the original ligands are 
exchanged partially or fully with chiral ligands. Unlike 
direct synthesis, in which chiral ligands influence the 
crystal structure, the chirality in this case is due to chiral 
surface distortion of the nanocrystals (induced by the 
capped ligands), chiral patterning of the surface ligands 
or the chiral field effect47,82,94.
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Chiral-​perovskite nanocrystals (R-​DACH nano-
crystals and S-​DACH nanocrystals) were obtained by 
replacing the oleylamine ligands with a small amount 
of chiral (1R, 2R)-1,2-​diaminocyclohexane (R-​DACH) 
or (1S, 2S)-1,2-​diaminocyclohexane (S-​DACH) lig-
ands79 (Fig. 5a). These chiral nanocrystals exhibit no 
circular dichroism signal from the region of the first 
excitonic transition band of the nanocrystal core 
(~580 nm). However, they do exhibit circular dichroism 
from 240 nm to 540 nm, owing to their chiral surface 
distortion and electronic interactions with the DACH 
ligands79. The photoluminescence of the perovskite 
nanocrystals is completely quenched by the chiral 
ligands.

Chiral-​ligand-​assisted reprecipitation method. In chiral-​
ligand-assisted reprecipitation, the ligands imprint chi-
rality onto the electronic states of the quantum-​confined 
perovskite. For instance, chirality was achieved in 
CH3NH3PbBr3 perovskite nanoplatelets via chiral-​
ligand-​assisted reprecipitation using R(or S)-​MBA at 
room temperature82. The resulting circular dichroism 
spectra feature two regions: one arising from excitonic 
transitions of the perovskite (400–450 nm) and the other 
from charge-​transfer transitions between the ligands and 
the nanoplatelets82.

Chiral-​ligand-​assisted tip-​sonication method. Recently, 
a simple, scalable, single-​step and polar-​solvent-​free 
method to synthesize high-​quality perovskite nanocrys-
tals was developed: direct tip sonication112. Through the 
replacement of the achiral organic capping ligands on  
the surface of the nanocrystal with chiral molecules, 
chiral-​perovskite nanocrystals could also be obtained. 
For example, R(or S)-​α-​octylamine (Fig.  4a) was 
employed as the chiral ligand80. In this case, the chirality 
of the perovskite nanocrystals originates from the surface  
distortion induced by the chiral ligands (Fig. 5b).

Chirality through environment
Chirality can also be induced in achiral molecular sys-
tems by tuning the environmental conditions by using 
chiral solvents113, external stimuli (such as strain)114, 
self-​assembly on chiral templated structures like DNA115, 
a chiral bias inducing chiral amplification into a supra-
molecular helical structure116 and photoinduced inversion 
of helical chirality117.

Whereas chiral molecules are recognized via their 
stereogenic centres, helical structures possess a chi-
ral axis about which molecules are spatially arranged 
to yield non-​superimposable mirror images118. 1D M 
and P chiral descriptors characterize left-​handed and 
right-​handed helices.
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Helical chirality. A series of helical 1D chiral perovskites 
were synthesized through the introduction of achiral 
Schiff base cations, (E)-1-((3-​Rbenzylidene)amino)
pyridin-1-​ium (m-​RBz-1-​APy+; R = NO2, Br, Cl or F)119 
(Fig. 5c). Two types of highly polarized 1D [PbI3]∞ chains 
are coupled to the achiral organic cations by Coulomb 
and van der Waals forces, and the organic cations adopt 
a kagome-​like tubular architecture (Fig. 5d). The obtained 
crystals are all in the same Sohncke space group of P63 
(point group: C6), enabling ferroelectricity87,88. A die-
lectric hysteresis loop was observed in these chiral per-
ovskites, with a saturated polarization of 48 µC cm−2 at 
room temperature119.

Another series of helical chiral perovskites were 
reported by using disulfide H3N(CH2)2SS(CH2)2NH3 
ligands (a vital unit in biosystems) through solvothermal 
reaction36. The obtained α-[H3N(CH2)2SS(CH2)2NH3P-
bI5]·H3O crystallizes into the P21 Sohncke space group, 
which displays an M helicity (left-​handed helical form), 
opposite to that of the right-​handed helical DNA. When 
α-[H3N(CH2)2SS(CH2)2NH3PbI5]·H3O is heated to 75 °C, 
a phase transition (conformation change) occurs from 
helical α-​phase to the achiral racemic β-​phase36.

Supramolecular chiral-​induction approach. When an 
achiral perovskite is incorporated into a chiral cogel, 
this induces chirality into the perovskite, as the achiral-​
perovskite nanocrystals follow the chirality of the gel 
structure to produce a chiral packing through supra-
molecular coassembly. Chiral-​perovskite cogels were 
formed by dispersing perovskite nanocrystals into chiral 
lipid N,N′-​bis(octadecyl)-​l-​glutamic diamide (LGAm) 
or its enantiomer N,N′-​bis(octadecyl)-​d-​glutamic 
diamide (DGAm)81 (Fig. 5e). Owing to the strong scat-
tering from the gels, no obvious circular dichroism 

signal was observed in the gel states; however, differ-
ent handedness of induced circularly polarized photo
luminescence (CPPL) was observed in the chiral cogels. 
The degree of photoluminescence polarization reached 
0.365% at room temperature for CsPbBr3 nanocrys-
tals in DGAm, comparable to the value of 0.33% for 
CsPbBr3 nanocrystals in LGAm. The CPPL could only 
be observed in the assembled state and disappeared in 
the disassembled state, which could be obtained through 
heating or using a polar solvent, such as chlorobenzene81 
(Fig. 5e).

Areas for improvement
For successful applications, the design of chiral per-
ovskites must continue to advance. As discussed above, 
chirality has been introduced into perovskites via 
different strategies, each with their own advantages 
and disadvantages. Owing to their periodic nature, 
chiral-​perovskite single crystals exhibit stronger chiral-
ity than polycrystals and thin films. Thus, future studies 
will benefit from improving film quality.

Helical chiral perovskites can be obtained starting 
from achiral ligands36,119; however, their prediction and 
design are difficult. Symmetry analysis reveals that 
reported chiral-​perovskite single crystals have only a 
twofold rotation or twofold screw axis33–37. It is expected 
that structures incorporating higher-​order symme-
try operations will have stronger chirality. Theoretical  
modelling will aid in this effort.

Chiral-​perovskite nanocrystals offer solution stability 
with colloidal states. Unfortunately, although different 
approaches have been employed to synthesize them, 
their chirality is generally low. Incorporation of a chiral 
matrix could be an effective strategy to overcome this 
issue. In principle, if the absorption and emission of per-
ovskite nanocrystals overlap with the circularly polar-
ized absorption (or transmittance) of the chiral matrix, 
stronger circularly polarized absorption and emission 
can be expected120.

Chiroptoelectronic and ferroelectric applications
The chiroptical behaviour of 2D chiral (R-​MBA)2PbI4 and 
(S-​MBA)2PbI4 films has been explored in 2017 (ref.47). 
Strong, circularly polarized transitions flank the excitonic 
peak, showing that chiral perovskites exhibit the Cotton 
effect121 (Box 1). Circular differential scattering was also 
observed in the circular dichroism as the film thick-
ness was increased47. However, when (R-​MBA)2PbI4 or 
(S-​MBA)2PbI4 powder was mixed with KBr to form a pel-
let, no obvious circular dichroism peaks were observed; 
this indicates that crystal orientation and crystallinity 
play a vital role in the total chirality of amorphous and 
polycrystalline chiral-​perovskite samples47.

Circularly polarized photodetectors
Left-​handed and right-​handed CPL can be used as two 
independent channels to transmit information, doubling 
the rate of data transport compared with unpolarized 
light122. The development of CPL-​based communication 
requires high-​performance circularly polarized photo-
detectors and CPL sources. Unlike indirect methods 
of detecting and emitting CPL, chiral materials do not  
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require additional optics; thus, circularly polarized photo
detectors and light sources based on chiral materials are 
promising for integrated and flexible devices.

HOIPs have been demonstrated as effective photo-
detectors owing to their low trap density1, strong light 
sensitivity23,24 and tunable absorptions14. Similarly, by 
combining the impressive optical and electrical prop-
erties of HOIPs with chirality, chiral HOIPs should be 
promising for the detection of CPL38,39. Currently, there 
are only a few reports on direct CPL detection from dif-
ferent material systems52–55. A major challenge for CPL 
photodetectors is combining chirality (usually associated 
with organic molecules) and efficient charge transport 
(usually associated with inorganic semiconductors). 
Therefore, chiral HOIPs are especially promising, as they 
benefit from both aspects38,39.

Recently, a CPL photodetector based on 1D chiral 
perovskites was reported38 (Fig. 6a). 1D chiral perovskites 
have the largest molar ratio of chiral ligands compared 
with 2D and quasi-2D chiral perovskites, and, thus, 
should exhibit the strongest CPL response. A relationship 

between the thickness of the chiral medium and its abil-
ity to distinguish left-​handed circularly polarized (LCP) 
and right-​handed circularly polarized (RCP) light (Δc/c) 
for photoconductive CPL detection was formulated as:

∕
⋅c

c
c c

c c
α d
α d

Δ =
−

( + ) 2
≈ Δ

exp( ) − 1
(1)L R

L R L

where Δc is the difference between the carrier concen-
tration generated by LCP and RCP light illumination 
(Δc = cL − cR), whereas c is the average carrier concen-
tration (c = (cL + cR)/2), Δα is the difference between 
the absorption coefficients for LCP (αL) and RCP 
(αR) light and d is the thickness of the chiral medium. 
Increasing the thickness of the chiral medium results in 
a decrease of the CPL response (Fig. 6b). Thus, an optimal 
thickness of the chiral HOIPs film is necessary to achieve 
the most efficient CPL photodetection.

At a low CPL intensity of 5 µW cm−2 (395 nm), the 
responsivity reaches 120 mA W−1 (Fig. 6c), which is 
almost two orders of magnitude larger than the CPL  
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photodetectors based on plasmonic silver metama-
terials53. The distinguishability (gres) of these chiral- 
perovskite-​based circularly polarized photodetectors is 
calculated as:

g
R R
R R

=
2( − )

+
(2)res

L R

L R

where RL and RR are the responsivities of the circularly 
polarized photodetector under LCP and RCP light illu-
mination, respectively. Similar to gabs, gres also ranges 
from −2 to 2, which stand for pure LCP or RCP light 
detection, respectively, whereas 0 indicates no distin-
guishability between LCP and RCP light. Here, for this 
1D chiral-​perovskite-​based CPL photodetector, the 

Box 1 | Key terms

sohncke space groups
the sohncke space groups are the 3D space groups containing only operations of the first kind (rotations, roto-​translations, 
translations). among the 230 types of space groups, 65 are sohncke86,182 (Fig. 3a). if a material’s crystal structure belongs to 
a sohncke space group, then that material is chiral.

Neumann–Curie principle
the Neumann–Curie principle defines the relationship between sohncke space groups and the corresponding properties, 
such as circular dichroism, second-​harmonic generation (sHG) and ferroelectricity87,88 (Fig. 3b). For instance, all chiral 
single crystals exhibit optical rotation and circular dichroism. However, optical rotation and circular dichroism can also  
be observed in non-​centrosymmetric achiral point groups, such as S4, Cs, C2v and D2d. similarly, most of the sohncke 
groups are sHG active, but not those in the point groups O, D4 and D6.

Circular dichroism
Circular dichroism is a phenomenon whereby a material absorbs more of one circular polarization than the other, making 
the transmitted light elliptical46 (Fig. 3c). the degree of chirality can be represented in terms of ellipticity (θ, in mdeg)183 or 
anisotropy factor (gabs)

184.

ellipticity
the ellipticity (θ, in mdeg) is calculated based on the equation:

θ = Δ 












π

mdeg A( )
ln 10
4

180000
(5)

where ∆A is the difference in absorption of the left-​handed (AL) versus right-​handed (Ar) circularly polarized light.

anisotropy factor
the anisotropy factor184 is the ratio of circular dichroism to conventional absorption, defined by:

= −
+ ∕( )

g
A A

A A 2
(6)abs

L R

L R

in this scale, the values range from −2 (absorbing only right-​handed circularly polarized (rCP) light) to 2 (absorbing only 
left-​handed circularly polarized (LCP) light), with 0 indicating the absorption of both equally.

Circularly polarized photoluminescence
Circularly polarized photoluminescence (CPPL) results from different emission strengths of LCP versus rCP light.  
the degree of photoluminescence polarization (DP) is given by:

= −
+

DP
I I

I I
(7)L R

L R

where IL and Ir are the emission intensities of LCP and rCP light, respectively. values of DP close to −1 or 1 indicate pure 
rCP or LCP photoluminescence, respectively, whereas a value of 0 indicates no CPPL.

Cotton effect
the Cotton effect shifts absorption spectra for LCP versus rCP light, resulting in the characteristic dispersive feature in 
circular-​dichroism spectroscopy.

two-​photon absorption-​based upconverted photoluminescence
two-​photon absorption-​based upconverted photoluminescence (tP-​uPL) occurs when a fluorophore absorbs two photons 
whose combined energy equals that of the electronic transition. Fluorescence resulting from this process occurs at a 
higher energy than that of the incoming photons (upconverted fluorescence, Fig. 3d).

second-​harmonic generation
sHG, also called frequency doubling, is a nonlinear optical process in which two photons interact with a nonlinear 
material to effectively combine to form new photons with twice the frequency of the initial photons185 (Fig. 3e).

Ferroelectricity
Ferroelectric materials have intrinsic spontaneous electric polarization, even in the absence of an applied electric  
field (Fig. 3f). Ferroelectric materials are described using the saturated polarization186 and coercivity91. the saturated 
polarization is the largest ferroelectric polarization that the material achieves under an external electric field, whereas 
coercivity is the minimum electric field required to depolarize a ferroelectric material after it has been driven to saturation.
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measured gres is 0.10 at 395 nm, higher than the aniso-
tropy factor of 0.02 obtained from circular dichroism 
measurements (Fig. 6c); this discrepancy was attributed 
to the spin-​dependent carrier generation27, transport and 
collection123 for chiral perovskites under CPL excitation. 
The performance of these 1D chiral-​perovskite-​based 
CPL photodetectors remained almost the same after 
one month under ambient conditions without encap-
sulation. A flexible CPL photodetector was also fabri-
cated on a polyethylene terephthalate substrate, and 
the performance exhibited negligible degradation upon  
100 cycles of bending38.

A CPL photodetector based on 2D chiral perovskite/
MoS2 heterojunctions was also reported39. The device 
reached a responsivity of 450 mA W−1 at 519 nm and a 
detectivity of 2.2 × 1011 Jones39. The calculated gres was 0.09 
at 510 nm (Fig. 6d), similar to that of CPL photodetectors 
based on 1D chiral perovskites.

At this stage, the performance of CPL photodetec-
tors is still far from that required for practical appli-
cations. In-​depth work is still needed to increase the 
anisotropy factor (gres) of chiral-​perovskite materials 
(see Section 2 of the Supplementary Information). As 
outlined earlier, different strategies (such as better crys-
tallinity, higher-​order rotation/screw symmetry, chiral 
perovskites in chiral matrices) may prove effective to 
this end.

Circularly polarized light sources
In addition to data transfer, CPL sources have appli-
cations in bioresponsive imaging61,62, 3D displays64,65, 
anti-​counterfeiting124, quantum computing66,67 and spin-
tronics43,44. For example, light polarization is very impor-
tant for high-​contrast and efficient displays. To eliminate 
the glare from external light sources (such as sunlight), 
circularly polarized anti-​glare filters are widely used to 
trap ambient light in the display. However, if the light 
source is unpolarized, roughly half of the emitted light is 
blocked by the anti-​glare filters, substantially decreasing 
its brightness and efficiency. Chiral materials are prom-
ising because they produce CPL that can be transmitted 

unimpeded through the filters54,60,125. Recently, circularly 
polarized LEDs with degrees of electroluminescence 
polarization over 50% were reported73,74.

HOIPs have been demonstrated as efficient LEDs, 
with external quantum efficiencies reaching over 
20%12,126,127. Therefore, chiral HOIPs are promising can-
didates for CPL sources. However, 2D chiral-​perovskite 
films generally exhibit poor photoluminescence quantum 
yields (PLQYs) at room temperature, owing to strong, 
non-​radiative recombination128. To overcome this issue, 
low-​dimensional chiral perovskites (LDCPs) were devel-
oped (Fig. 7a). Through combined strategies of energy 
funnelling10,11 and chirality transfer92,93, efficient emission 
was enabled while maintaining the intrinsic optical, elec-
trical and spintronic properties of the perovskites83. Both 
circular dichroism and CPPL were observed in these 
LDCPs. They exhibited a PLQY of 90% due to strong 
energy funnelling and a 3% CPPL was observed in the 
absence of an external magnetic field83 (Fig. 7b–d). For 
comparison, 3D achiral perovskites can only achieve a 
comparable degree of photoluminescence polarization 
under an external magnetic field of 5 T (ref.129).

The photoluminescence polarization of LDCPs arises 
from asymmetric emission rates of LCP and RCP light 
based on Einstein coefficients130. In two-​level systems, 
Einstein coefficients relate the absorption rate to the 
emission rate. Because the emission of LDCPs only 
originates from one excited state (the component with 
higher <n>) decaying to the ground state, the system 
is effectively a two-​level system. Hence, an asymmetric 
absorption rate (circular dichroism) between spin up  
and spin down implies an asymmetric emission rate 
between the two spin species. The degree of photo
luminescence polarization can be tuned further through 
the Zeeman interaction by applying an external mag-
netic field. For R-​LDCP, when a positive magnetic field 
is applied, the contribution by the intrinsic asymmetric 
emission rates and Zeeman interaction are synergistic. 
Therefore, the photoluminescence polarization increases 
when applying a positive magnetic field (Fig. 7c, range I). 
However, when a negative magnetic field is applied, there 

Table 1 | Chirality-​transfer mechanisms, dimensionality, form and applications of chiral perovskites

Chemical formula Mechanism Dimensionality Form application

(R-​MBA)2PbI4 (refs34,39) I 2D Microplates CPL source

(R-​CMBA)2PbI4 (ref.40) I 2D Crystal Ferroelectric

R-3-​FP-​MnCl3 (ref.41) I 1D Crystal Ferroelectric

(R-​MPEA)1.5 PbBr3.5(DMSO)0.5 (ref.48) I 2D Crystal NLO, CP-​SHG

(R-3APD)PbCl4·H2O (ref.35) I 1D Crystal White-​light source

R-​MBAPbI3 (ref.38) II 1D Film CPL photodetector

R-​LDCP83 II Quasi-2D Film Spintronics

R-​Pero-​NCs80 II 0D Colloidal nanocrystal NLO, TP-​UCPPL

R-​DACH-​NCs79 II 0D Colloidal nanocrystal CPL photodetector

Pero-​NCs (DGAm)81 II 0D Chiral cogel CPL source

R-​MBA-​NPs82 IV 0D Colloidal nanoplatelets CPL photodetector

Mechanisms: I, ligand-​induced chiral inorganic structure; II, chiral distortion of the inorganic surface; III, chiral patterning of the 
surface ligands; IV, chiral field effect. CPL , circularly polarized light; CP-​SHG: circularly polarized second-​harmonic generation; 
DMSO; dimethyl sulfoxide; NCs, nanocrystals; NLO, nonlinear optics; TP-​UCPPL , two-​photon absorption-​based upconverted 
circularly polarized photoluminescence.

Nature Reviews | Materials

R e v i e w s



is a competition between the intrinsic asymmetric emis-
sion rates and the Zeeman interaction (Fig. 7c, ranges II 
and III). The photoluminescence polarization decreases 
to zero when the negative magnetic field reaches −2.8 T, 
where the contribution by intrinsic asymmetric emission 
rates balances the Zeeman splitting. Further increasing 
the negative magnetic field allows the Zeeman interac-
tion to play the leading role, and the photoluminescence 
polarization becomes negative83 (Fig. 7c, range III). The 
magnetic-​field dependence in these chiral perovskites 
(Fig. 7b–d) is fitted as:

DP
g μ B

k T
DP= + (3)eff B

B
0

where geff is the effective g factor of the spin-1/2 electron 
and hole in the spin-​pair species, µB is the Bohr magne-
ton, B is the applied magnetic field, DP0 is the degree of 
polarization introduced by the chirality in the absence 
of the magnetic field, kB is the Boltzmann constant and 
T is the temperature. Based on the fitting results, the geff 
for R-​LDCPs, S-​LDCPs and rac-​LDCPs are, respectively, 
0.032, 0.031 and 0.027.

The influence of temperature on the photolumines-
cence polarization of pure 2D chiral (R-​MBA)2PbI4 and 
(S-​MBA)2PbI4 microplates has also been systematically 

investigated39. A record photoluminescence polarization 
of 17.3% was observed at 77 K (ref.39). With increasing 
temperature, the degree of photoluminescence polar-
ization decreases substantially due to the enhanced 
electron–phonon couplings and thermal-​expansion 
interactions, which reduce the lattice distortion and, 
thus, decrease the chirality39. In addition, increased 
temperature also results in spin mixing, which further 
decreases the degree of polarization129.

At this stage, most studies on CPL sources with chiral 
HOIPs have been performed at cryogenic temperatures. 
For practical application, future work should focus on 
achieving high photoluminescence polarization at ele-
vated temperatures. This will require developing novel 
chiral-​perovskite materials with strong chirality39, as DP 
has been shown to decrease dramatically with increasing 
temperatures129. A better understanding of this correla-
tion may also help to direct synthesis towards weakening 
or even eliminating this temperature dependence.

Nonlinear chiroptical effects
Nonlinear optics describes a large body of phenomena 
in which a medium behaves nonlinearly with respect 
to optical excitations (in terms of optical power). The 
magnitude of the nonlinearity gives a measure of 
medium-​assisted light–light interaction in the material. 
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Fig. 4 | representative chiral ligands and chiral hybrid organic–inorganic perovskites. a | The chiral ligands discussed in 
this Review: MBA (methylbenzylammonium), CHEA (1-​cyclohexylethylammonium), MPEA (β-​methylphenethylammonium), 
3APD (R-3-​aminopiperidine), NEA (1-(1-​naphthyl)ethylammonium), DACH (1,2-​diaminocyclohexane), 2OA (2-​octylamine), 
3AQ (3-​ammonioquinuclidinium), 3AP (3-​ammoniopyrrolidinium), 3-​FP (3-​fluoropyrrolidinium) and CMBA (1-(4-​chlorophenyl)
ethylammonium). Based on the Cahn–Ingold–Prelog priority rules, the four groups around a chiral centre are prioritized 
according to the atomic number and priority. This begins with the four atoms closest to the chiral centre and moves to 
subsequent atoms in the event of a tie. With the fourth (the lowest priority) group facing away from the viewer, a path can  
be traced from groups 1–2–3. If this path is clockwise, the chiral centre is designated as R (from the Latin word ‘rectus’); 
conversely , if it is anticlockwise, the chiral centre is designated as S (from the Latin word ‘sinister’). The clockwise  
and anticlockwise directions are shown (blue arrows) according to the priority of the four groups. b | Single-​crystal  
structures of 2D and 1D chiral perovskites and of a 2D racemic achiral perovskite based on MBA: (R-​MBA)2PbI4,  
(S-​MBA)2PbI4, R-​MBAPbI3, S-​MBAPbI3 and (rac-​MBA)2PbI4.
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A strong nonlinear response is desirable in applications 
such as data processing, which use integrated pho-
tonic circuits for realizing higher data-​transmission 
rates131, or nonlinear microscopy, in which nonlinearity 
helps to obtain more information on the studied sam-
ple132. Nonlinear effects can be classified by their order  
or the number of interacting photons needed to describe 
the phenomena (for example, second-​order nonlinear 
optics involve two-​photon interactions). As a basic rule, 
the interaction becomes weaker as its order increases. 
Hence, the strongest nonlinear effects should be second 
order.

However, for even-​order nonlinear optical responses 
like SHG, strict structural non-​centrosymmetry is 
required133. A series of non-​centrosymmetric achiral 
perovskites was reported recently, and SHG134, two-​ 
photon absorption135 and linear electro-​optic effects136 
were observed. However, predicting or designing non-​ 
centrosymmetric achiral perovskites is challenging. Thus, 
the exploration of optical nonlinearities in perovskites 
has been focused mainly on the odd-​order nonlin-
ear optical effects137,138. Chiral HOIPs are intrinsically 
non-​centrosymmetric and, thus, are promising for non-
linear chiroptical applications48,80. Additionally, because 
chiral HOIPs can couple to CPL, they can be utilized 
in chiral integrated photonic circuits139–141, which have 
been shown to have higher efficiency than conventional 
circuits142.

Nonlinear chiroptical effects were recently obser
ved in 2D chiral HOIPs based on β-​MPEA (Fig. 4a).  
A solvent-​engineered chiral perovskite (Fig. 7e) was obtained 
by using an antisolvent-​vapour-​assisted crystallization 
strategy, in which dimethyl sulfoxide (DMSO) molecules 
axially coordinate with Pb2+ in the partially edge-​shared 
octahedra in (MPEA)1.5PbBr3.5(DMSO)0.5 (ref.48). Both 
circular dichroism and polarization-​dependent SHG were 
observed in these chiral-​perovskite nanowires.

Polarization-​dependent SHG was observed under 
a circularly polarized excitation at 850 nm (Fig. 7f). The 
SHG circular dichroism (SHG-​CD) is defined as:

∕I I I ISHG − CD = ( − ) ( + ) (4)RCP LCP RCP LCP

where IRCP and ILCP are the SHG intensity under 
RCP and LCP excitation, respectively. Vertical and 
horizontal analysers are used to analyse the polari-
zation of the generated SHG signal. If the SHG signal 
is only due to the circular dichroism, the intensity is 
the same for the vertical and horizontal analysers. In 
(R-​MPEA)1.5PbBr3.5(DMSO)0.5 nanowires, the SHG-​ 
CD reaches a large value, indicating promising future 
towards nonlinear chiroptical applications48.

Beyond second-​order nonlinear effects, one 
important nonlinear chiroptical effect is two-​photon 
absorption-based upconverted circularly polarized 
photoluminescence (TP-​UCPPL), which has recently 
been observed in chiral-​perovskite nanocrystals80. Unlike 
traditional one-​photon absorption CPPL, TP-​UCPPL 
doubles the excitation wavelength. The CPPL of 
chiral-perovskite nanocrystals in a poly(methyl meth-
acrylate) matrix was measured and the results indicated 
that two-​photon and one-​photon circularly polarized  

excitations give a similar degree of photoluminescence 
polarization, around 0.25%80. Therefore, TP-​UCPPL 
can replace one-​photon absorption CPPL if the doubled 
wavelength is more suited for a specific application. Such 
applications include imaging of biosystems (where red or 
near-​infrared light is needed to penetrate the skin)143,144 
and chiroptoelectronics (as telecommunications use 
near-​infrared bands)122.

Future work on nonlinear chiroptical effects should 
focus on determining the correlation between space 
group and efficiency in SHG and TP-​UCPPL. Because 
non-​centrosymmetry is required, it will be important to 
learn which space group provides the strongest nonlinear 
chiroptical effects. From there, a more directed approach 
will be available to improve performance. Furthermore, 
the optimization of the phase-​matching condition 
(between the SHG signal and the excitation signal), work-
ing temperature and dimensionality are important for 
SHG. The phase-​matching condition has a pronounced 
effect on the generated second-​harmonic power145. 
Likewise, temperature and dimensionality can affect the 
value of the second-​order susceptibility139. Hence, opti-
mization of all these parameters is necessary for practical 
application of second-​order nonlinear chiroptics.

Ferroelectric properties
Ferroelectric materials are a class of functional mate-
rials that are widely used in electrocaloric devices, 
ferroelectric random-​access memories and dynamic 
random-​access memory capacitors146,147. Based on the 
Neumann–Curie principle87,88, chiral perovskites are 
expected to exhibit intrinsic ferroelectric properties if 
they crystallize in the special point groups of C1, C2, C3, 
C4 and C6. Owing to the organic and inorganic hybrid 
nature, the ferroelectric performance of chiral per-
ovskites can be tuned efficiently through rational design 
of chiral organic ligands and the introduction of different 
metals40,41,84,109.

Recently, a series of ferroelectric chiral perovskites, 
ranging from 3D metal-​free chiral perovskites84 to 
1D chiral hybrid organic–inorganic manganese per-
ovskites41 and 2D chiral hybrid organic–inorganic  
lead perovskites40, were reported. In 3D metal-​free chiral 
perovskites84 (Fig. 8a), chiral 3-​ammoniopyrrolidinium 
(3AP, Fig. 4a) and 3-​ammonioquinuclidinium (3AQ, 
Fig. 4a) were employed to introduce chirality, and the 
resulting R(or S)-3AP-​NH4X3 and R(or S)-3AQ-​NH4X3 
belong to the P21 Sohncke space group at room tem-
perature (X = Cl or Br), thus enabling pyroelectric and 
ferroelectric properties87,88.

Later, different halide atoms were introduced to 
obtain 1D and 2D chiral HOIPs40,41. Owing to the strong 
electron-​withdrawing ability of fluorine and chlorine 
atoms, the electric dipole moment was enhanced, thus, 
increasing the saturated polarization under an electric 
field. Moreover, the intermolecular interactions could 
be enhanced through hydrogen bonds and dipole–dipole 
interactions; thus, the ferroelectric working temperature 
could be increased to above room temperature.

For example, the introduction of fluorine atoms 
into (pyrrolidinium)MnCl3 (ref.148) increased the 
phase-​transition temperature for the obtained chiral 
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R(and S)-3-​FP-​MnCl3 (3-​FP, Fig. 4a) to 333 K (ref.41), 
compared with 295 K for the parent compound 
(pyrrolidinium)MnCl3. The saturated polarization 
of R-3-​FP-​MnCl3 and S-3-​FP-​MnCl3 reaches 5.0 and 
5.4 µC cm−2 at 313 K, respectively, and decreases to zero 
after heating to the paraelectric phase at 363 K (ref.41) 
(Fig. 8b,c). Recently, this strategy was extended to 1D 
hybrid organic–inorganic cadmium chiral perovskites109: 
the phase-​transition temperature increased by 63 K after 

introducing fluorine, while the saturated polarization 
increased from 3.6 to 5.79 µC cm−2.

Chlorine, another electron-​withdrawing atom, was 
introduced to the para position of MBA (CMBA, Fig. 4a), 
and 2D chiral (R-​CMBA)2PbI4 and (S-​CMBA)2PbI4 
were obtained40 (Fig. 8d). The incorporation of the chlo-
rine atom decreases the crystal symmetry from the 
highly symmetric P212121 space group of (R-​MBA)2PbI4 
(ref.34) to the lower-​symmetry space group P1 for 
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(R-​CMBA)2PbI4; thus, (R-​CMBA)2PbI4 exhibits intrinsic 
ferroelectricity, whereas (R-​MBA)2PbI4 does not. Both 
(R-​CMBA)2PbI4 and (S-​CMBA)2PbI4 exhibit a large sat-
urated polarization of 13.96 µC cm−2 at 293 K based on 
the point-​charge model.

However, the above ferroelectric performances were 
measured on single crystals, not thin films. For com-
mercial application, ferroelectric materials should be 
solution processed, which would enable integrated fer-
roelectric devices146,147. Thus, the next step is developing 
high-​performance multiaxial ferroelectric films149.

Outlook
Although chiral perovskites were first synthesized in 
the early 2000s33, their chiroptical properties were only 
measured as recently as in 2017 (ref.47). Since then, 
reports of chiral perovskites have become more preva-
lent35,37–41,48,79–85,109,150. As this trend continues, we expect 
that more researchers will begin to explore their prop-
erties, new fields will open up and new applications will 
be targeted. Here, we discuss specific areas of interest for 
chiral perovskites.

3D chiral perovskites
Compared with their low-​dimensional counterparts, 
3D chiral HOIPs should have smaller exciton-​binding 
energies and longer carrier-​diffusion lengths, which 
should prove advantageous in chiroptoelectronic and 
spintronic applications. As of today, however, 3D chiral 
HOIPs have yet to be synthesized. Recently, theoreti-
cal calculations have shown that 3D chiral perovskites 
should be both thermodynamically and kinetically sta-
ble85. These 3D chiral perovskites would contain a chiral 
cation such as CHFClNH3

+ or CHDFNH3
+. Note that 

these two chiral cations are the simplest known prac-
tical forms of chiral ligands, although other varieties of 
small chiral ligands could also be possible151. If they can 
be synthesized, we believe that the resulting 3D chiral 
HOIPs will find wide applications, including the pro-
duction of circularly polarized perovskite waveguides152, 
photodetectors38 and lasers153, second-​order nonlinear 
optical imaging61, chiro-​spintronics43,44 and topological 
quantum engineering51.

Spintronic applications
Recently, it was discovered that chiral molecules can be 
used in the injection and detection of spin signals43, and 
the combination of the spin-​filtering effect of molec-
ular chirality and spintronics nurtures a new research 
domain, called chiro-​spintronics or chiral-​based 
spintronics43,44.

Achiral perovskites recently showed promising 
spin-​related properties32, including strong spin–orbit 
coupling129, large Rashba splitting25,26,154 and long spin 
lifetimes27–29. However, they require the use of a mag-
netic field or a circularly polarized excitation to gener-
ate spin-​polarized carriers, whereas chiral perovskites 
inherently enable spin-​polarized absorption and emis-
sion. In addition, chiral perovskites provide a plat-
form for spin transport31 and spin manipulation30,39,83. 
Recently, optical spin manipulation was demonstrated 
in low-​dimensional chiral perovskites in the absence of 
an external magnetic field83. Chiral perovskites exhibit 
asymmetric circular polarization emission rates83, which 
leads to an imbalanced population of different spin spe-
cies of charge carrier, even under continuous, unpolar-
ized excitation. This could be utilized to create a spin 
current either in the perovskite itself or by spin injection 
into a ferromagnetic material. This is in contrast to the 
creation of a spin imbalance in achiral materials such as 
achiral perovskites or transition-​metal dichalcogenide 
monolayers, where a circularly polarized excitation or an 
external magnetic field are required30,129,155,156.

Another interesting way to view chirality transfer 
is treating it as a spintronic equivalent of doping in 
semiconducting electronics. Owing to the correlation 
between chirality and spin selectivity, we can ‘dope’ 
materials with different handedness of chirality through 
rational design. Hence, making a junction between two 
materials with different chirality could result in a spin 
diode; that is, a device that allows spin currents to flow 
only in one direction. It is straightforward to extend this 
view to a chiral-​based spin transistor and, hence, a fully 
chiral-​based spintronic circuit. Moreover, if the material 
is light emitting, such as chiral perovskites, this could 
result in spintronic photodiodes and LEDs, in which the 
detection of light results in a spin current, and the emis-
sion of light depends on a spin current. All these devices 
would work under zero magnetic field.

Chiral quantum devices
One advantage of spin-​based devices over charge-​based 
electronics is that Joule heating is minimized, resulting 
in more energy-​efficient devices. In addition, spin (or, in  
general, angular momentum) represents an additional 
degree of freedom to carry information. Therefore, 
spin is one of the best candidates for the physical 
realization of quantum bits66. It has been noted that 
chirality may also play an important role in quantum 
communications157.

For quantum communications, photon polari-
zation is used for carrying quantum information in 
a variety of schemes. As such, a well-​polarized and 
highly efficient single photon source is desired. For 
most well-​established single-​photon sources, such 
as InGaAs quantum dots, emission is unpolarized158. 

Fig. 5 | Chirality through chiral ligands and environment. a | Post-​synthetic 
chiral-​ligand-​exchange strategy to synthesize chiral-​perovskite nanocrystals (NCs).  
b | Schematic illustration of the use of the chiral-​ligand-​assisted tip-​sonication  
method to prepare chiral-​perovskite NCs. Through adding the chiral ligands  
(left: R-2-​octylamine, right: S-2-​octylamine) during the direct tip-​sonication  
process, chirality is introduced into the perovskite NC through surface-​lattice 
distortion by the chiral ligands. c | The molecular structure of the achiral Schiff  
base cation: (E)-1-((3-​nitrobenzylidene)amino)pyridin-1-​ium. d | The achiral 
(E)-1-((3-​nitrobenzylidene)amino)pyridin-1-​ium cations adopt a kagome-​like  
tubular architecture: nonuple-​stranded helices around the highly polarized 1D [PbI3]∞ 
chains (chain 1, sixfold screw axis) and triple-​stranded helices around the highly 
polarized 1D [PbI3]∞ chains (chain 2, C3 rotation axis). e | In the supramolecular chiral-​
induction approach, achiral-​perovskite NCs follow the chirality of a gel structure to 
produce a chiral cogel. These coassembled structures emit circularly polarized light 
(CPL); the CPL signal is switched via heating or cooling the cogel, as the disassembled 
state obtained by heating does not emit CPL. Panel a is reproduced with permission 
from ref.79, AIP. Panel b is reproduced with permission from ref.80, ACS. Panel d is 
reproduced with permission from ref.119, ACS. Panel e is reproduced with permission 
from ref.81, Wiley-​VCH.
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Subsequently, polarizing the emission unavoidably 
reduces its efficiency. Therefore, it is an advantage that 
chiral-​perovskite quantum dots generate single pho-
tons with a well-​polarized state (circularly polarized). 
Additionally, it has been shown that chiral materials 
can be used to detect the orbital angular momentum of 
light159, which is another degree of freedom that can be 
used to record quantum information160. Hence, the uti-
lization of chiral perovskites could enable high-​capacity 
quantum communication.

Furthermore, for quantum internet schemes, spins  
are used as qubits in each node161 (Fig. 1e), and photons are  
used to connect these nodes. In this scheme, the spin–
photon interface is critical. Recently, it was reported that 
perovskite quantum dots have a non-​degenerate bright 
triplet exciton state162,163 that can be used as a spin qubit. 
Additionally, chiral-​perovskite quantum dots interact 
efficiently with light (they have high absorption coef-
ficients and PLQYs). For these reasons, they may be an 
ideal platform for spin–photon interfaces and quantum 
networks. Chiral perovskites may also be used to tune 
the properties of these spin–photon interfaces. Towards 
this direction, spin manipulation and characterization of 
spin coherence times are important future steps.

Lead-​free chiral perovskites
Chiral perovskites can also be partially or wholly doped 
by different heavy metals, resulting in two benefits. One 
is the direct manipulation of the fundamental proper-
ties of the perovskites. A recent review has highlighted 
the structure–property effects of doping in achiral per-
ovskites164, which could prove to be a template for the 
chiral variants. For chiral applications (including spin-
tronic devices), we expect that spin–orbit coupling will 
play an important role in the design and tuning of the 
optoelectronic and spintronic properties of chiral per-
ovskites, and the influence of different metals should be 
dramatic.

The second benefit is the possibility of making 
lead-​free devices. For some applications, the presence of 
lead is problematic. Lead’s toxicity stems from its ability 
to mimic other metals and interfere with biological func-
tions. Examples include blocking N-​methyl-​D-​aspartate 
receptors and inhibiting the formation of haem, leading 
to neuron damage and anaemia, respectively165.

Therefore, its replacement with a less hazardous metal 
is strongly desired. For achiral perovskites, tin (Sn2+) is 
considered to be the most promising alternative164, as 
it has a similar ionic radius as lead, and tin-​based solar 
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cells have achieved power-​conversion efficiencies over 
9%166. Recently, other lead-​free chiral HOIPs based on 
bismuth37, copper106–108, manganese41 and cobalt110 have 
also been reported. Hybrid chiral manganese perovskites 
are good candidates for circularly polarized LEDs167 and 
hybrid chiral copper and cobalt perovskites are attractive 
chiral ferromagnetic materials168.

Machine learning and theoretical studies
In recent years, machine learning, in combination with 
density functional theory, has enabled the computational 
screening and accelerated the discovery of novel per-
ovskite structures169–173. Some lead-​free perovskites were 
predicted by theoretical calculations and then realized 
synthetically174,175. The systematic application of machine 
learning for the identification of novel chiral-​perovskite 

structures would accelerate discovery, but a larger library 
of materials is first necessary to gain predictive power. 
At the same time, deeper theoretical studies are still 
needed to predict circular dichroism, circularly polar-
ized emission and the topological quantum properties 
of chiral perovskites51,176,177. These theoretical studies 
could provide more suggestions and guidance for the 
rational design of high-​performance chiral-​perovskite 
materials and accelerate the development of chiroptics 
towards applications.

New design strategies
The strategies for circumventing the challenges for 
chiral perovskites might naturally diverge from those 
that are currently employed. For example, changes that 
slightly decrease the mobility might still be considered 
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worthwhile if they greatly increase the circular dichro-
ism. In addition, the desire for chirality will require novel 
synthetic routes to obtain larger dissymmetry factors; this 
will result in new structure–property/performance rela-
tionships that will influence subsequent developments  
and applications.

Today, most efforts on chiral HOIPs still focus on 
bottom-​up strategies through molecular design33,34,84; 
however, 3D printing provides another strategy to con-
struct perovskite chiral structures through bottom-​up  

approaches. Top-​down strategies towards chiral-​ 
perovskite metasurfaces are also very promising178–181. 
These approaches combine the advantages of metas-
tructures (strong chirality) with the impressive opti-
cal, electrical and spintronic properties of perovskites. 
We envision that both bottom-​up and top-​down strat-
egies will continue to improve the chiral properties  
of HOIPs.
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