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Abstract
Photonic crystal heterostructures are concatenations of photonic crystals
differing in refractive index or lattice geometry. They can be fabricated
using self-assembly of colloidal spheres. In this paper we present a review
of the devices enabled by such colloidal heterostructures, along with an
envelope approximation used to efficiently study their properties. We show
that the approximation is well suited for studying polymer photonic crystals.
We also provide a comparison between the envelope approximation and a
tight-binding method used to study defects in photonic crystals.
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1. Introduction

Photonic crystals, structures with a periodic modulation of
their refractive index in two or three dimensions [1, 2],
have received significant attention in the past two decades.
Understanding of their behaviour has grown through extensive
experimental and theoretical investigation.

On the experimental front, both two-dimensional and
three-dimensional structures have been fabricated. Two-
dimensional structures [3] consist of an array of holes etched
lithographically in a slab; index guiding is used to confine
light to the slab. Two-dimensional photonic crystals use an es-
tablished fabrication technique and simplified simulation pro-
grams. Three-dimensional structures have been fabricated by
advanced semiconductor processing [4], by self-assembly of
colloidal spheres from a dispersion [5] or by holography in
a polymer photoresist [6]. Fabrication of self-assembled or
holographic structures is much simpler, and after semiconduc-
tor infiltration they may exhibit a complete band gap.

Wavelength filters, waveguides with sharp bends and
microcavities with high quality factors [7] have been proposed
and fabricated. Demonstrated devices using photonic crystals
typically rely on defects introduced in the perfectly periodic
crystal. Most such devices have been based on two-
dimensional crystals in which defects are controlled in the
lithographic process. The size of a hole may be modified,
or the hole removed completely, in order to produce a point
defect. Line defects are produced by removing a row of holes.

Three-dimensional crystals fabricated by self-assembly or
holographic techniques do not typically lend themselves as
directly to controlled local modification. Point defects have
been introduced in such crystals [8] in a less pre-programmable
fashion.

Photonic crystal heterostructures have recently been
introduced as an alternative to defects to create devices in
three-dimensional colloidal photonic crystals [9–11]. They
consist of concatenations of different photonic crystals which
differ in band structure—through differentiation in refractive
index, lattice period or even lattice type. An example
structure is shown in figure 1. Fabrication of such structures
by sequential self-assembly has been demonstrated [12], as
has controlled self-assembly of polymer photonic crystals on
patterned substrates [13].

The flow of light in photonic crystal heterostructures ex-
tends further the analogy with electronic wavefunctions in-
side semiconductors—an analogy which substantially moti-
vated research in photonic band-gap materials. Semiconductor
quantum electronics employs heterostructures to create reso-
nant barriers and superlattices to select electrons of a given
energy, and also to provide high-mobility channels in high-
electron-mobility transistors (HEMT). Photonic heterostruc-
tures would seek to exploit the fact that light of a certain fre-
quency will find different allowed or forbidden bands in the
different photonic crystals.

Just as in the electronic counterpart, a method is needed
to allow forward design of photonic crystal heterostructures.
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Figure 1. A photonic crystal heterostructure: dark spheres are of a
different refractive index to white ones.

Structures must be engineered to meet a given set of
requirements rather than being simulated purely numerically
and optimized iteratively. Existing photonic crystal simulators
fall mostly into two categories. The first type assumes an
infinitely periodic structure and computes bands and modes.
The second type makes almost no assumption on the structure,
and solves Maxwell’s equations in a general medium.

In the case of heterostructures, the first type cannot be
used, since the junctions break the periodicity. The second type
of simulator will be inefficient in heterostructures for it ignores
the presence of large regions of perfect local periodicity. The
size and complexity of the numerical computations becomes
truly onerous in three-dimensional crystals.

What is needed is an algorithm that will combine the
two types of simulation: it will exploit the fact that large
sections of the crystal are periodic, but allow this periodicity
to extend over finite regions. Such a method—an envelope
approximation—has been introduced recently in the photonic
domain [9–11]. Inspired by the envelope approximation used
to model semiconductor heterostructures [14], it reduces each
region of photonic crystal to its dispersion relation. These
parameters are then used to calculate the behaviour of the
envelope of the electromagnetic wave in the heterostructure.
The method is useful both for simulation of devices, as well as
for forward design of structures to meet given specifications.
In this paper we review the envelope approximation method
for photonic crystal heterostructures and provide examples of
its application in colloidal photonic crystals.

We conclude our introduction by noting related
problems previously studied. Superstructure gratings
exhibit periodicities on two scales and are analysed using
a tight-binding approximation employing coupled mode
equations [15]. Light propagation in a non-linear photonic
crystal has been studied using a multiple-scale approach [16]
which finds the envelope modulating the Bloch modes of the
crystal, in a similar fashion to the envelope approximation.
Simulation algorithms have been proposed to deal with
junctions and defects: Multem [17] computes the transmittance
of a periodic layer of spheres, and allows almost arbitrary
layers of this type to be stacked. However, it is quite
intensive numerically. A method has also been proposed [18]
similar to the electronic tight-binding approximation for
semiconductors: using localized waves, it is ideally suited
for the analysis of point or line defects. We discuss in
section 4 the relationship of the envelope function method with
complementary simulation approaches.

2. The envelope approximation framework

The object of our model is to simplify the solution of the wave
equation

[∇2 + ω2µε − ∇(∇·)]E = 0 (1)

in a photonic heterostructure defined by its dielectric constant:

ε(r) = εb + ε f (r)[1 + �s(r)]. (2)

We have separated the dielectric permittivity into three parts:
a constant background permittivity, εb; a fast oscillation,
ε f , defining the photonic crystals; and a slow variation, �s ,
describing the heterostructure. �s is allowed to have jumps,
but these should be separated by several lattice constants of the
underlying crystal.

Within a region of homogeneous photonic crystal,
solutions of the wave equation take the form of Bloch modes:

En,k = un,keik·r. (3)

We express the electric field inside a heterostructure as a
superposition of the bulk Bloch modes:

E(r) =
∑

n

Wn(r)un(r) (4)

Wn represents an envelope modulating the Bloch modes of the
bulk crystals. As described in [10] and [11], we can find an
equation for this envelope which does not include the fast-
varying refractive index of the photonic crystals. In this way
we treat the crystals as if they were homogeneous materials,
except that appropriate parameters are used to take account
of the effects of the photonic crystal. These parameters are
obtained from the properties of the bulk crystals used in the
heterostructure. We may employ either the Bloch modes [10]
or the dispersion relations [11] for this purpose. Ignoring
the background dielectric constant, εb, we write the envelope
equation as

HW (r) = ω2µ[1 + �s(r)]W (r). (5)

W is a column vector containing the envelopes for all the
bands. H is a matrix operator with the following elements:

Hn,m ≡ −
{
(∇2 + k2

0 − ω2
mµεb)un,m

+
∑

p

κp,n,m

(
1

j

∂

∂p
− k0p

)

−
∑

p

∑
q

[(
∂2

∂p ∂q
+ k0,pk0,q

)
un,p,m,q

]
− ω2

nµδn,m

}
.

(6)

un,m , un,p,m,q and κn,m are constants computed from the Bloch
modes of the crystal. ωm and ωn are the frequencies of the
Bloch modes, k0 is the wavevector of the Bloch modes, p and
q represent the three directions x , y and z.

Alternatively, the equation for a single band n can be
written as a function of the band frequencies instead of the
Bloch modes:

ω2
n(−i∇)Wn(r) = ω2[1 + �s(r)]Wn(r) (7)

ω2
n(−i∇) describes the exact dispersion relation of the given

band.
�s represents a perturbation to a bulk photonic crystal.

Depending on its strength, it may be taken into account in one
of two ways. For small perturbations we may assume small
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Figure 2. The transmittance of the resonance double barrier.

changes in the Bloch modes, and need only account for the
bulk properties of one type of crystal, with the heterostructure
described with the term �s . For stronger perturbations, or for
interfaces between crystals of different lattice geometries, this
is no longer appropriate. We need to obtain a general solution
in each crystal separately. The heterostructure solution is
then found from these general solutions and the application
of boundary conditions at the interface. This is similar to
what is done with semiconductors, in which a Schrödinger-
like equation, with suitably chosen effective mass, is solved for
each material, and the solutions are connected at the interface.

Considering the individual photonic crystals as regions
of known, homogeneous band structure puts the focus onto
the effects of the heterojunctions. The dimensions and
characteristics of a structure may be determined directly
without the need for complex optimization algorithms.

3. Photonic heterostructure devices

We classify the applications of photonic crystal heterostruc-
tures into two categories depending on the direction of prop-
agation of the light. In analogy to semiconductor electronics,
we call the case where light must cross heterointerfaces ‘per-
pendicular transport’ and the case where light forms a mode
with the propagation vector parallel to the interfaces ‘parallel
transport’.

3.1. Perpendicular transport

When light crosses a number of heterojunctions and propagates
through a number of photonic crystals, it encounters different
dispersion bands in the different crystals, potentially falling
inside the stop band of certain materials. In such cases the
electric field will decay exponentially. If the region is wide
enough, the decay will be complete, and all the energy will be
reflected. If they are narrow, some energy will be allowed to
traverse them, as in quantum mechanical tunnelling. Combin-
ing allowed and forbidden regions allows us to set up cavities
for light, and to control the tunnelling through the forbidden
regions. Through judicious choice of heterostructure geome-
try and dimensions, the transmittance and reflectance spectra
of these structures may be precisely engineered.
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Figure 3. The transmittance of a superlattice with eight layers.

The simplest example of a perpendicular transport device
is the resonant double barrier. This is the example of figure 1
in which a layer of one photonic crystal is enclosed between
two layers of a different crystal. Near the frequency of interest,
light is allowed in the centre layer and encounters a forbidden
region in the side layers. The centre region functions as the
well and the sides form the barriers.

Light at a resonant well frequency will tunnel through the
first barrier, be reflected a number of times between the barriers
and then tunnel through the second barrier. Light at any other
frequencies is not allowed in the well. The transmittance of
the structure will be high only for the frequency of the resonant
state. The operation of this device is similar to that of a Fabry–
Perot interferometer. The barriers act as mirrors, while the well
forms the centre cavity. The width of the transmittance peak
depends on the strength of the barriers. Stronger barriers will
confine light longer in the centre cavity, with a better frequency
selectivity. A stronger or longer barrier will give a narrower
resonance peak. The transmittance of such a structure is shown
in figure 2. For illustrative purposes, a photonic crystal with
simple cubic geometry is employed with the spheres touching
one another. The centre region includes four layers of spheres
of index 1.5 in air, while the side crystals have 32 layers of
spheres of index 1.4. These indices are typical of colloidal
polymer or silica photonic crystals. The position of the peak
obtained from the envelope approximation agrees with full
numerical simulations within 0.2%.

To obtain a transmittance peak of a certain width, with a
flat top, the structure in figure 1 needs to be repeated a number
of times to create a periodic alternation of the two crystals. This
periodicity imposed on a second scale creates a superlattice
which will give rise to a new set of allowed and forbidden
minibands. As we bring two identical wells close together,
their modes will interact and their energy levels will split. As
more and more wells are brought together, we will obtain many
states, very closely spaced, which will ultimately merge into a
miniband. Allowed minibands will have a transmittance close
to unity. They are abruptly separated from the forbidden bands
which have a very low transmittance. In figure 3 we show
the transmittance spectrum of a structure with eight periods
in which we can observe the closely spaced states. The non-
uniformity in the heights of the peaks is due to the finite number
of frequencies included in the simulation.
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Figure 4. The profile of a guided mode.

Perpendicular transport has been observed experimentally
in colloidal photonic crystal heterostructures [12]. These
structures consist of thin crystal layers composed of colloids
of different sizes deposited on top of each other.

3.2. Parallel transport

Photonic heterostructures can also be used to confine light
propagating parallel to the interfaces. They act as a waveguide,
where both the core and the cladding are made of photonic
crystals. The requirement is that light falls in an allowed band
in the core, but encounters a stop band in the cladding.

In conventional dielectric waveguides, the core must
have a higher refractive index than the cladding in order
to confine light through the mechanism of total internal
reflection. Photonic heterostructure waveguides do not have
this restriction, potentially confining light even if the average
index in the core is lower than in the cladding. In figure 4
we show the profile of a mode guided in a slab waveguide
with lower average index in the core than in the cladding.
The solid curve represents the electric field obtained from
full numerical simulations. The dashed curve represents
the envelope of the mode computed using the envelope
approximation. In most cases the envelope provides enough
information when designing such waveguides, indicating
whether a mode is guided or not. As described in [11], the
envelope approximation can also be used to compute the single-
mode condition for these waveguides in a manner similar to
the single-mode condition of dielectric waveguides.

4. Comparison of modelling techniques

In this section we compare the envelope approximation with
the tight-binding technique presented in [18]. Both methods
use the Bloch modes of the bulk crystals in order to calculate
properties of non-periodic structures more efficiently. In the
tight-binding method waves are expressed as a superposition
of localized Wannier functions. Interactions between the
localized waves are limited to nearest neighbours. The
parameters of the Wannier functions are obtained by fitting
their frequency eigenvalues to the true eigenvalues obtained
by full simulations. As required by the initial assumptions,
the Wannier functions decay rapidly to almost zero within one
lattice constant.

Having determined the functions for bulk crystals,
deviations from periodicity are expressed in the Wannier
function basis with coefficients obtained by numerical

integration. Due to the localized nature of the basis set used
in the tight-binding method, the method is ideal for defects
of the order of one lattice constant. Larger defects are less
well described using the same basis set. On the other hand, a
transfer matrix method using the tight-binding framework has
been introduced [19] to address heterostructures which have
deviations from periodicity on a larger scale. The tight-binding
approximation, being based on localized states, is better suited
to crystals with a high index contrast and with high-index
regions that are well separated, such as is the case with thin
rods in air. The method has so far been deployed only in two-
dimensional photonic crystals.

The envelope approximation, in contrast, is designed
to work with heterostructures in which the heterojunctions
are well separated. This creates the conditions necessary
for separation of the length scales of the crystals and the
heterostructures. The method is suited to photonic crystals
with both high and low index contrast. Two versions
exist—one which is useful only with structures that present
a weak perturbation from a bulk crystal and one which is
more generally applicable. It was found that the envelope
approximation provides good results for heterostructure layers
at least four lattice constants thick.

5. Conclusions

In this paper we have reviewed the envelope approximation,
and its use with heterostructure devices for both perpendicular
and parallel propagation. We have also presented a comparison
between the envelope approximation and a tight-binding
method for the analysis of defects in photonic crystals.

Since the envelope approximation allows us to treat
photonic crystals almost as one treats homogeneous materials,
many of the well established techniques developed for these
materials can be adapted to photonic crystals. As an example,
the transfer matrix method and the beam propagation method,
developed for junctions between homogeneous materials, can
be applied to photonic crystal devices.
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