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the materials need to show improved carbon 
footprints, as well as the ability to match the 
scale of the global energy challenge.

Enormous quantities of experimental 
data are being generated on the properties of 
such materials. The US National Institute of 
Standards and Technology, for example, hosts 
65 databases, some with as many as 67,500 
measurements. Also, since 2010, more than 
1.7 million scientific papers have been pub-
lished on batteries and solar cells alone.

Relating the structure of a material to its 
function needs accelerating. The search 

The world needs more energy. Govern-
ments and companies are investing 
billions of dollars in technologies to 

harvest, convert and store power1. And as 
silicon solar cells approach the limit of their 
performance, researchers are looking to 
alternatives based on perovskites and quan-
tum dots2. The batteries that store the energy 
must get cheaper, more efficient and longer-
lasting3. And devices need to be manufac-
tured from safe and abundant materials such 
as copper, nickel and carbon rather than from 
lead, platinum or gold. Life-cycle analyses of 

space is vast. Many materials are still found 
empirically: candidates are made and tested 
a few samples at a time. Searches are subject 
to human bias. Researchers often focus on a 
few combinations of the elements that they 
deem interesting. 

Computational methods are being devel-
oped that automatically generate structures 
and assess their electronic features and 
other properties4. The Materials Project, for 
instance, is using supercomputers to predict 
the properties of all known materials5. It cur-
rently lists predicted properties for more 

Use machine learning  
to find energy materials 

Artificial intelligence can speed up research into new photovoltaic, battery and 
carbon-capture materials, argue Edward Sargent, Alán Aspuru-Guzik and colleagues. 

A solar module on display at an expo in Tokyo.
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than 700,000 materials. But the tremen-
dous potential to translate such data into 
industrial and commercial applications is still 
a long way from being realized. 

Machine learning — algorithms trained 
to find patterns in data sets — could greatly 
speed up the discovery of energy materials. 
It has already been used to predict the results 
of quantum simulations to identify potential 
molecules and materials for flow batteries, 
organic light-emitting diodes6, organic photo
voltaic cells and carbon dioxide conversion 
catalysts7. The algorithms can predict results 
in a few minutes, compared with the hun-
dreds of hours it takes to run the simulations8. 

Challenges remain, however. There is no 
universal representation for encoding mate-
rials. Different applications require different 
properties, such as elemental composition, 
crystal structure and conductivity. Well-
curated experimental data on materials are 
rare, and computational tests of hypotheses 
rely on assumptions and models that may 
be far from realistic under experimental 
conditions. 

The machine-learning and energy-sciences 
communities should collaborate more. They 
must understand each other’s capabilities and 
needs. We offer the following recommenda-
tions, which came out of a workshop run by 
the Canadian Institute for Advanced Research 
in May in Boston, Massachusetts. 

FOUR BRIDGES 
Share meaningful data. Materials scientists 
should organize their data into standardized, 
machine-readable forms, such as the ‘comma-
separated values’ (CSV) files commonly used 
in spreadsheet applications. At present, results 
tend to be condensed into graphs and tables, 
each group organizes its data differently and 
testing conditions and experimental set-ups 
vary. Many teams process their raw spectra or 
normalize their data and the models are often 
subject to errors and biases in the absence of 
experimental evidence to calibrate results. 

Government funding agencies and pub-
lishers should require data to be uploaded to 
a publicly accessible database such as the Mat
erials Project, the Materials Data Curation 
System or the Citrination platform9. Con-
sortia and universities could share the costs 
of maintaining these databases; credit could 
be given when citing them. Alternatively, an 
independent entity could be established to 
maintain an experimental database, in much 
the same way as protein crystal structures are 
currently shared in the Protein Data Bank. 
It is important to include negative results — 
machine-learning algorithms need to be able 
to differentiate between materials that meet 
performance targets and those that don’t. 

A culture of sharing also needs to be 
encouraged within the materials-science 
community. The computer-science and medi-
cal communities are reaping huge benefits 

from making their large data sets available for 
machine learning. For example, IBM Watson 
Health in Cambridge, Massachusetts, is using 
machine learning to improve drug discovery 
and cancer therapies. 

Spur collaboration with competitions. 
‘Grand challenge’ awards are a cost-effective 
way to foster innovation. For example, the 
XPRIZE initiative has led to breakthroughs 
in carbon capture and utilization, ocean dis-
covery and artificial intelligence. The 2004 
Ansari XPRIZE for Suborbital Flight resulted 
in SpaceShipOne, the 
first private spaceship 
to enter outer space. 
The Kaggle platform 
uses competitions to 
crowdsource solutions 
to computer-model-
ling and data-science 
problems, such as pre-
dicting the activity of drug-like molecules. 
And sponsored hackathons run by compa-
nies such as AngelHack in San Francisco, 
California, have developed apps for firms 
including Mastercard.

We propose that machine-learning com-
petitions be established to encourage the 
finding of new energy materials in publicly 
available data sets, such as those of the Mate-
rials Genome Initiative, the European Novel 
Materials Discovery Laboratory (NOMAD) 
initiative or Citrination. The goal would be 
to predict a material for a specific application 
or property. For example, nanoscale porosity 
is key to carbon-capture materials, the gap 
between electronic bands is an important 
descriptor for solar cells and hardness could 
be used to develop lightweight composite 
materials for transport. Machine learning can 
consider multiple properties simultaneously. 

Competitions could be sponsored by 
university departments or by commercially 

supported institutes such as Canada’s Vector 
Institute for Artificial Intelligence in Toronto 
and Montreal Institute for Learning Algo-
rithms, or the US-based Toyota Research 
Institutes. They could even take a similar 
format to the online protein-folding game 
Foldit, in which people take part both for the 
glory of discovery and to beat others’ scores. 
Intellectual property could be managed 
along similar lines to the XPRIZE. 

Develop a shared language. Chemists, com-
puter scientists, machine-learning experts, 
materials engineers, programmers and 
physicists all have their own areas of exper-
tise and nomenclature. Materials engineers, 
for example, are skilled at making materials of 
various compositions, and machine-learning 
researchers would need to understand these 
subtleties to be able to predict materials of 
practical use. 

We propose that universities host work-
shops and summer schools and develop cur-
ricula that bridge these fields. Some summer 
schools already teach conventional compu-
tational chemistry and machine learning for 
computer-science applications; few incor-
porate both. More forums should be set 
up for training, such as the Understanding 
Many-Particle Systems with Machine Learn-
ing programme run by the Institute for Pure 
and Applied Mathematics in Los Angeles, 
California. 

Accelerate and automate. As a fast-moving 
area of research, energy-materials discovery 
is a perfect test bed for advanced machine-
learning techniques. Machine learning has 
tended to assume a fixed training set; robots 
for autonomous cars are trained to drive using 
images or videos of roads, for example. But 
this can be slow and outcomes are difficult to 
repeat or vary between users. By contrast, the 
data landscape for energy materials changes 
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The tip of a gold 
nanoneedle catalyst 

for the electrochemical 
conversion of CO2 into 

renewable fuels.

“‘Grand 
challenge’ 
awards are a 
cost-effective 
way to foster 
innovation.”
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continually as new information and mod-
els emerge. Useful here is the growing field 
of deep reinforcement learning, in which 
agents explore their evolving environment 
to find the best solutions. Applying such 
algorithms to materials discovery would 
make searches progressively more efficient 
and allow the learner to explore the space 
of molecules, just as chemists do. 

WHAT NEXT
Developing machine-learning approaches 
is one of the main goals of the Clean 
Energy Materials Innovation Challenge 
run by the Mission Innovation global col-
laboration. The collaboration is funded 
by voluntary government pledges — and 
nations must deliver on their commit-
ments with the necessary investments. 

In summary, more investment is needed 
in artificial intelligence and robotics-
driven materials research throughout the 
world. More data must be made available 
to people programming the robots. And 
experimentalists, robotics experts and 
algorithm designers should communicate 
and collaborate more to facilitate rapid 
troubleshooting.

Time is running out to find the new 
energy technologies the world needs. ■
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Last month, the European Union marked 
the tenth year of its Strategic Energy 
Technology Plan. It is one of many 

policy initiatives worldwide to accelerate 
innovation in energy technologies to reduce 
greenhouse-gas emissions. As the window 
of opportunity to avert dangerous climate 
change closes, we urgently need to take stock 
of these initiatives — what works and why?

Public investments in energy research, 
development and demonstration (RD&D) 
have risen since the low levels of the 

mid-1990s and early 2000s. In 2016, member 
countries of the Organisation for Economic 
Co-operation and Development spent 
US$16.6 billion on energy RD&D, compared 
with $10 billion in 2000 (adjusted for pur-
chasing power parity). In October, the United 
Kingdom set out its Clean Growth Strategy 
to invest more than £2.5 billion ($3.3 billion) 
in low-carbon innovation between 2015 and 
2021. In 2015, the EU and 22 nations pledged 
to double their investment in energy RD&D 
under the Mission Innovation adjunct to 

A solar farm floats on a lake that formed after the collapse of a deep coal mine in Huainan, China.

Six principles 
for energy 
innovation

Decades of experience must inform future initiatives, 
urge Gabriel Chan and colleagues.
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