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Copper/alkaline earth metal oxide interfaces 
for electrochemical CO2-to-alcohol 
conversion by selective hydrogenation
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Naiwrit Karmodak    3, Jianan Erick Huang1, Yu Yan1, Armin Sedighian Rasouli1, 
Adnan Ozden5, Feng-Yi Wu4, Zih-Yi Lin4, Hsin-Jung Tsai4, Tsung-Ju Lee4, 
Fengwang Li    1, Mingchuan Luo    1, Yuhang Wang1, Xue Wang    1, 
Jehad Abed    1,6, Ziyun Wang1, Dae-Hyun Nam1, Yuguang C. Li    1,7, 
Alexander H. Ip1, David Sinton5, Chaofang Dong    2  & Edward H. Sargent    1 

Multicarbon alcohols produced by electrochemical CO2 reduction 
(CO2RR) are attractive alternatives to fossil fuels; however, the 
selectivity towards alcohols in CO2RR remains low, a result of competing 
hydrocarbon (that is, ethylene) production. Here we report on Cu 
catalysts decorated with different alkaline earth metal oxides (MOs).  
We found that BaO delivers a Faradaic efficiency of 61% towards C2+ 
alcohols. At an industry-relevant current density of 400 mA cm−2,  
the ratio of alcohols to hydrocarbon reached 3:1. Mechanistic studies, 
including in operando X-ray absorption spectroscopy, in situ Raman 
spectroscopy and density functional theory calculations, suggested that 
the increased selectivity towards alcohols originates from sites at the 
MO/Cu interface. Furthermore, computational studies indicated that 
the incorporation of MOs favours a hydroxy-containing C2 intermediate 
(*HCCHOH) over the hydrocarbon intermediate (*HCC) at interfacial Cu 
sites on the path to alcohol products. We also propose that the relative 
bond strengths of Cu–COH and C–OH correlate with the selectivity for 
alcohol over hydrocarbon.

The electrocatalytic reduction of CO2 (CO2RR) to valuable fuels and 
feedstocks using renewable electricity presents a carbon-neutral route 
to fuel generation1,2. Among multicarbon CO2RR products, ethanol 
and n-propanol are particularly desired to replace fossil fuels owing to 
their high volumetric energy density and compatibility with existing 
storage and transportation infrastructure3–5.

Recent studies have revealed that the alcohol yield can be 
increased by improving the C–C coupling process6, achieved 
through diverse surface binding sites7, a CO-rich local environ-
ment8, metal–support interactions9 and cooperative promotion at 
multiple sites10. However, control of alcohol selectivity over hydro-
carbon selectivity remains a challenge, with a Faradaic efficiency 
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Cu sites weaken the Cu–COH bond of a *HCCOH intermediate, facilitat-
ing hydrogenation at the C atom, thereby preserving the OH group and 
favouring alcohol production.

Results
MO/Cu catalysts promote CO2-to-alcohol conversion over 
hydrocarbon
To construct MO/Cu catalysts experimentally, we incorporated MOs 
(M = Ba, Sr and Ca) into Cu through a co-precipitation method. The 
addition of aqueous alkali to a mixed alkaline earth metal and Cu salt 
solution under stirring led to the co-precipitation of mixed-metal mate-
rial (see Methods). As shown in Supplementary Fig. 1, X-ray diffraction 
analysis of this precursor material prepared with Ba(NO3)2 revealed a 
mixture of crystalline Cu(OH)2 and BaO (hydrate), as expected from a 
co-precipitation method21. Scanning electron microscopy (SEM) of the 
mixed catalysts revealed nanoparticles on the scale of tens of nanome-
tres with well-defined interfacial boundaries (Fig. 1a). High-resolution 
transmission electron microscopy (HRTEM) showed lattice fringes of 
BaO and Cu(OH)2 in different particle domains, with the lattice param-
eters of 0.37 and 0.20 nm matching well those of Cu(OH)2 and BaO 

(FE) towards alcohol products of less than 54% having previously 
been reported11.

Oxidized copper facilitates the conversion of CO2 into oxygen-
ates, for example, methanol12, ethanol13,14 and oxalate15, by suppress-
ing hydrocarbon products, and has achieved 99% selectivity towards 
ethanol in thermocatalysis16. However, oxidized Cu is reduced under 
electrochemical CO2RR conditions, and this impedes its use in alcohol 
production. In light of recent in situ studies14,17–20 of interface reactions 
between Cu and metal oxides, we posited that the oxidized state of 
Cu could be stabilized at the interface between Cu and a metal oxide 
under CO2RR conditions.

In this study we introduced a series of alkaline earth metal oxides 
(MOs)—in which the metal elements maintain their oxidation states 
up to −2 V versus the standard hydrogen electrode (SHE)—onto Cu to 
fabricate robust MO/Cu interfaces. In a gas diffusion electrode-based 
flow-cell system, these MO/Cu catalysts achieved 2–2.5 times greater 
selectivity over hydrocarbons (FE ratio of ~3:1) compared with pure Cu. 
In operando X-ray absorption spectroscopic analysis suggested that 
interfacial Cu sites are partially oxidized by the MOs. Density functional 
theory (DFT) calculations revealed that the partially positively charged 

970 960 950 940 930

In
te

ns
ity

 (a
.u

.)

Binding energy (eV)

Cu 2p3/2

Cu 2p1/2

Saturated
Cu 2p3/2

Saturated
Cu 2p1/2

Cu 2p

8,960 8,980 9,000 9,020

Cu in CuBaOx
Cu
CuO

N
or

m
al

iz
ed

 a
bs

or
ba

nc
e 

(a
.u

.)

Energy (eV)

70 nm

500 nm 20 nm

0.20 nm

0.37 nm

Cu(OH)2
(021)

5 nm

Cu Ba

a b

c

d e

BaO
(220)

Fig. 1 | Characterization of the as-prepared BaO/Cu electrocatalysts. a,b, SEM 
(a) and HRTEM (b) images of the precursor hydroxide composites of the BaO/Cu 
catalyst. The right-hand image in b shows a magnified image of the highlighted 
red square, revealing the interfacial structure in detail. c, STEM image (left) and 

the corresponding EDX mapping images (Cu and Ba) of the precursor hydroxide 
composites of the BaO/Cu catalyst. d, XPS spectrum of Cu 2p, showing that both 
Cu and Cu(II) are present in the sample. e, XANES spectra of the Cu K-edge of Cu, 
CuO and the as-prepared BaO/Cu catalyst.
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(Fig. 1b). Scanning transmission electron microscopy (STEM) with 
energy-dispersive X-ray spectroscopy (EDX) mapping further con-
firmed the phase separation of Cu(OH)2 and BaO (Fig. 1c and Supple-
mentary Fig. 2). The oxidation states of Cu and Ba in these mixtures were 
determined by high-resolution X-ray photoelectron spectroscopy (XPS; 
Fig. 1d and Supplementary Fig. 3). X-ray absorption near-edge structure 
(XANES) analysis of the Cu K-edge (Fig. 1e) further confirmed that Cu 
has an average oxidation state of +1.96 ± 0.01 in the mixed catalyst.

We then sprayed these nanoparticles onto a porous polytetra-
fluoroethylene (PTFE) substrate and assessed the CO2RR performance 
in a flow cell using 1 M KOH as the electrolyte (Supplementary Fig. 4). 
The precursor material was reduced immediately, forming BaO/Cu. The 
catalyst exhibited twofold increased selectivity for alcohol products 
(ethanol and n-propanol) compared with pure Cu: this remained the 
case over a range of applied current densities spanning from 100 to 
500 mA cm−2 (Fig. 2a). An FE of 61% towards C2+ alcohols was achieved 
with a partial current density of 244 mA cm−2 (Fig. 2b). The half-cell 
energy efficiency for CO2-to-alcohol conversion was 30%. Comparison 
with the literature showed that both the alcohol partial current den-
sity and the energy efficiency were higher than those reported previ-
ously6,7,10,22–24 (Fig. 2c). The selectivity for alcohols increased with Ba 
concentration until the molar ratio of Ba and Cu reached ~2:1 (Fig. 2d); 
the FE towards C2+ was observed to decrease on further increasing the 
Ba content, which we attribute to a lack of available Cu sites. At a current 
density of 400 mA cm−2, the system operated at a stable potential of 
−0.75 V versus the reversible hydrogen electrode (RHE) and delivered 
a stable alcohol FE of 58% over 20 h of continuous operation (Fig. 2e).

Similar electrocatalytic behaviour was observed when we replaced 
BaO in the Cu/MO catalyst with CaO or SrO (Supplementary Figs. 5  
and 6): the production of ethanol and n-propanol increased with a 

total FE of 46% for CaO/Cu and 49% for SrO/Cu, compared with an FE 
of 23% on pure Cu.

Interfacial Cu sites stabilize hydroxy-containing 
intermediates
We further assessed the stability of this catalytic system using in situ 
spectroscopic techniques. We first carried out in operando X-ray 
absorption spectroscopy (XAS) in a flow cell to determine the chemi-
cal states of Cu and Ba under CO2RR conditions. At a constant current 
density of 400 mA cm−2, the Cu species were partially reduced within 
3 min and then maintained a steady oxidation state, which we estimated 
by Cu K-edge XANES analysis to average ~0.7–0.9 (Fig. 3a,b, evaluated 
using a linear relationship of the edge shift25, and Supplementary Figs. 7 
and 8), whereas the pure copper oxide/hydroxide system was reduced 
rapidly to the metallic state26. We further conducted linear combination 
fitting of the XANES spectra to calculate the composition of Cu, finding 
a mixture of Cu0 (44%), Cu2O (18%), CuO (1%) and Cu(OH)2 (37%; Supple-
mentary Fig. 9). We tentatively ascribed these results to the abundant 
Cu/BaO interfaces giving rise to a rearrangement of electrons between 
Cu and the oxide27–30. Real-time Cu K-edge extended X-ray absorption 
fine structure (EXAFS) spectroscopy further confirmed the existence of 
Cu–O bonds during the CO2RR (Supplementary Fig. 11). Furthermore, 
Ba L3-edge XANES spectroscopy (Supplementary Fig. 12) showed that 
Ba remained in the +2 oxidation state during CO2RR up to an applied 
potential of −1.58 V versus RHE.

We then performed in situ Raman measurements across a poten-
tial range from −0.24 to −0.73 V versus RHE to explore the adsorp-
tion behaviour of the chemical intermediates at the active sites. The 
Raman spectra in Fig. 3c,d show four different Raman bands related to 
the *CO intermediate at 280, 360, 2,040 and 2,080 cm−1 for both the  
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Fig. 2 | CO2RR performance of the BaO/Cu catalyst. a, CO2RR product 
distribution obtained with the BaO/Cu and Cu catalysts at various current 
densities in 1 M KOH. b, Variation in the partial current densities of C2+ alcohols 
with potential with the BaO/Cu and Cu catalysts. c, Comparison of the energy 
efficiency and partial current density for CO2-to-alcohol conversion determined 

in this work and in previous studies. NP, nanoparticles. d, Comparison of 
alcohol and ethylene selectivity on BaO/Cu catalysts fabricated with various 
concentrations of Ba (in the precursor). e, Stability of the BaO/Cu catalyst at a 
constant applied current density of 400 mA cm−2 and the corresponding alcohol 
FE. The error bars represent the mean ± SD (n = 3 replicates).
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Cu/BaO and pure Cu catalysts. For the Cu–C≡O configuration, the rela-
tive amplitudes of the rotation (280 cm−1) and stretching (360 cm−1) 
bands of Cu–CO31–33 are reversed for the Cu/BaO (Fig. 3c) and pure Cu 
catalysts. Furthermore, the C≡O stretching bands are deconvoluted 
into two bands at 2,040 cm−1 (ref. 34) and 2,080 cm−1 (Fig. 3d), with 
the low-frequency band being less prominent with the pure Cu cata-
lyst (Supplementary Fig. 12). The new low-frequency C≡O stretching 
band for Cu/BaO has been assigned to a dynamic CO intermediate that 
contributes to the ensuing C–C coupling34. The relative intensities 
of the low- and high-frequency bands of the different catalysts were 
further analysed (Supplementary Figs. 13–15), with BaO/Cu showing 
the highest ratio (0.57). A linear relationship was found between C2+ 
selectivity and the relative intensity (Supplementary Fig. 16), indicat-
ing the contribution of the low-frequency band to C2+ production. The 
blueshift of the CC (in ethanol) stretching band35 on BaO/Cu (1,032 cm−1, 
Supplementary Fig. 17) attests to the stabilization of C2 intermediates 
on this catalyst. We ascribe the high-frequency stretching band to 
an isolated and static CO adsorbate, with a rising intensity at higher 
overpotentials, in agreement with the decreasing C2 selectivity at more 
cathodic potentials (Fig. 2b).

We observed two peaks related to Cu–O bands in the Raman spec-
tra (Fig. 3d): peak 1 above 500 cm−1 corresponds to the T2g vibrational 
mode of Cu2O (refs. 33,36) and Cu(OH)2 (ref. 37), whereas peak 2 above 
600 cm−1 arises from the Bg mode of CuO (refs. 38,39). The Raman spectra 
show that the intensity of peak 2 is dependent on the potential: as the 
potential becomes more negative, peak 2 gradually decreases and even 
disappears beyond −0.38 V, suggesting a charge-transfer conversion 
from CuO (peak 2) to Cu2O (peak 1) or pure Cu (no Cu–O band) in the 
BaO/Cu catalyst. This observation is consistent with the in situ XANES 
analysis (Supplementary Fig. 9), in which only 1% CuO was detected 
under CO2RR conditions. Interestingly, when peak 1 starts to grow and 
becomes the dominant Cu–O band (at −0.38 V), C≡O stretching bands 
also appear and split. Comparing with pure Cu (Supplementary Fig. 
12), we assign the Cu–C≡O configuration (Fig. 3d) to newly formed Cu 
sites (metallic and partially oxidized Cu) on BaO/Cu.

To explore in silico the possible role of the active Cu sites on BaO/
Cu in alcohol selectivity, we first sought to identify a leading candidate 
for the model of the catalyst surface. We used an approach informed by 
previous studies of metal oxide catalysts40–45, one that seeks to capture 
the influence of the oxide at the interface without adding more vari-
ables than is necessary.

We screened a series of Cu and BaO interfaces based on their geo-
metric mismatch (Supplementary Table 1) and formation energies 
(Supplementary Figs. 18 and 19 and Supplementary Table 2). This led us 
to use BaO(111)/Cu(111) (Supplementary Fig. 20) to represent the BaO/
Cu interface, as it has the lowest formation energy and lattice mismatch.

We investigated the electronic influence of BaO on the interfacial 
Cu sites. As shown in Fig. 4a, the incorporation of BaO induces a rear-
rangement of the electrons in the interfacial Cu atoms, giving rise to 
positively charged Cu sites, consistent with the in operando XANES 
analysis (Fig. 3b).

This interfacial model was then used to investigate the CO2RR at 
both interfacial Cu and metallic Cu sites. The data presented in Fig. 2a 
indicate that the BaO/Cu catalyst shows a higher alcohol selectivity but a 
similar total FE towards C2+ products compared with Cu alone. Previous 
mechanistic studies46,47 suggested that the C2 products ethylene and 
ethanol share similar initial reaction pathways: they both begin with 
*CO dimerization, but they diverge from *HCCOH. The proton–electron 
transfer step, in which *HCCOH progresses to a hydrocarbon interme-
diate (*HCC) or a hydroxy-containing intermediate (*HCCHOH), is the 
branching point for ethylene versus ethanol formation. We therefore 
calculated the reaction energies of the conversions of *HOCCH to *HCC 
(ethylene pathway) and *HOCCH to *HOCHCH (ethanol pathway) to 
investigate the effect of BaO on the C2 product distribution.

Compared with bare Cu, the interfacial Cu sites in the BaO(111)/
Cu(111) model promote the hydrogenation of *HCCOH to both hydro-
carbon and hydroxy-containing intermediates, lowering the reac-
tion energies by 0.25 and 0.45 eV, respectively (Fig. 4b), while Cu sites 
remote from BaO show similar adsorption features to that of bare Cu 
(Supplementary Fig. 21). The preference for *HCCHOH over *HCC at 
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interfacial Cu sites (Fig. 4c) offers one explanation for the experimen-
tally observed improved selectivity for alcohols on BaO/Cu.

Inspecting the hydrogenation and dehydroxylation steps, we note 
that the former (*HCCOH + H2O + e− → *HCCHOH + OH−) leads to the 
rupture of the Cu–COH bond and the formation of a C–H bond, while 
the dehydroxylation step (*HCCOH + e− → *HCC + OH−) requires cleav-
age of the C–OH bond. We posit the relative bond strength of Cu–COH 
compared with C–OH in *HCCOH as a descriptor for alcohol selectivity. 
We used Bader charge density analysis to quantify the charge transfer 
in Cu–COH and C–OH as a surrogate for bond strength. As shown in Fig. 
4d, the interfacial Cu sites of the BaO/Cu catalyst evidence more charge 
transfer from C to the OH group and less charge transfer between Cu 
and C atoms, indicating stronger C–OH and weaker Cu–COH bonds.

In previous studies, alcohol selectivity was reported on catalysts 
that create asymmetric sites7 and introduce confinement effects11. 
Analysing the results of these previous studies and the present work, 
we propose that, to favour hydroxy group conservation and thus the 
production of alcohols, one must seek to weaken the relative strength 
of the Cu–COH interaction by material modification strategies, for 
example, by breaking the compact and well-ordered surface struc-
ture of Cu (asymmetry strategy), donating electrons to COH from 
the nitrogen-doped carbon (N–C) layer (confinement strategy), and 
decorating and stabilizing strongly electronegative elements to extract 
electrons from Cu (constructing Cu/oxide interfaces).

Discussion
In summary, we have found that the decoration of Cu with MOs pro-
motes CO2-to-alcohol conversion. In particular, BaO/Cu delivered a 
2.5-fold higher alcohol selectivity than pure Cu by suppressing hydro-
carbon production. The enhanced alcohol selectivity is ascribed to the 

newly formed interfacial Cu sites that stabilize the hydroxy-containing 
C2 intermediates. We also explored, as a descriptor of alcohol selectiv-
ity, the bond strength of Cu–COH: weakening the Cu–COH bond favours 
the hydrogenation of the C atom over the O atom, preserving the OH 
group, thereby accounting for the increased yield of alcohol. This 
descriptor rationalizes different catalyst design strategies reported 
in the literature for enhancing alcohol selectivity. Beyond catalyst 
modification, we have also noted in recent reports that the interactions 
between active sites and adsorbed intermediates can also be optimized 
by electrolyte (for example, anion48 or cation49) effects. Our finding 
of the alcohol selectivity descriptor could enable improvements in 
catalyst design towards high alcohol selectivity.

Methods
Electrode preparation
All reagents were purchased from Sigma Aldrich and used without 
further purification. Barium solutions were prepared by dissolving 0, 
15, 30 and 45 g Ba(NO3)2 in 500 ml deionized water. Next, 0.7 g CuCl2 
was dissolved in 30.0 ml of the above solutions to synthesize mixed salt 
solutions with different Ba concentrations. Then, 30 ml of 1.0 M KOH 
was added dropwise to these solutions with stirring, leading to the 
co-precipitation of mixed-metal materials. These mixed-metal materi-
als were rinsed with water, centrifuged three times, first with water and 
then with methanol, and finally dried overnight under vacuum at room 
temperature. PTFE electrodes were prepared by airbrushing (using N2 
as the carrier gas): precatalyst ink comprising 30 mg of as-made oxide 
precatalyst, 3 ml methanol and 120 μl Nafion solution (~5 wt%) was 
sprayed onto commercial PTFE (5 cm × 5 cm). The areal loading was 
~1 mg cm−2. After vacuum drying, a 2 cm × 2 cm catalyst/PTFE electrode 
was cut and assembled into a flow-cell electrolyser.
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Material characterization
The morphology of the electrodes was characterized using a scan-
ning electron microscope (Hitachi S-5200) with a beam voltage of 
5 kV. HRTEM and elemental mapping images were collected using a 
Hitachi HF-3300 microscope, with an acceleration voltage of 300 kV, 
equipped with a Bruker EDX detector (Bruker 6 | 60 EDX detector). 
The the EDX studies were performed with an acquisition time of 3 min. 
Powder X-ray diffraction patterns were recorded using a Bruker D8 dif-
fractometer with Cu Kα radiation (λ = 0.15406 nm). XPS was conducted 
on a PHI 5700 ESCA system using Al Kα X-ray radiation (1,486.6 eV) 
for excitation. In operando XAS investigations were carried out at 
the 9BM beamline of the Advanced Photon Source (APS) located in 
the Argonne National Laboratory. The same conditions as used in the 
electrochemical characterization were ensured in a specially designed 
flow-cell reactor with a window sealed with Kepton tape26. The XAS 
signals were collected in total-fluorescence-yield fly-scan mode for 
Cu K-edge measurements and in normal-scan mode for Ba L3-edge 
measurements using a Vortex detector. Scans were performed in the 
energy range of 8,700–9,500 eV for Cu K-edge and in the range of 
5,100–5,500 eV for Ba L3-edge. The spectra were obtained by subtract-
ing the baseline of the pre-edge and normalizing that of the post-edge. 
EXAFS analysis was conducted using Fourier transforms of k3-weighted 
EXAFS oscillations to evaluate the contribution of each bond pair to the 
Fourier transform peak. Cu oxidation states were determined from the 
linear relationship of the edge shift in the XANES spectra. Cu foil, Cu2O, 
CuO and Cu(OH)2 were used as the standard samples of Cu0, Cu+ and 
Cu2+. The absorption edge positions were determined from the first 
maximum of the first-derivative spectra, constructing a correlation 
between the Cu oxidation state and the energy. The sample composi-
tion during the CO2RR was obtained by linear combination fitting of 
the XANES spectra using the Athena software. The fitting range was −20 
to 30 eV. In situ Raman measurements were conducted on a Renishaw 
inVia Raman microscope with a water immersion objective (×63), a 
785 nm laser and a modified flow cell using an integration time of 5 s 
and an average of 20 scans per region. In the above systems, a platinum 
wire and a Ag/AgCl electrode were used as the counter and reference 
electrodes, respectively.

Electrochemical measurements
Electrochemical studies were carried out using an electrochemical flow 
cell consisting of a gas chamber, a cathodic chamber and an anodic 
chamber. The PTFE-based working electrode was fixed between the 
gas and cathodic chambers, with the catalyst layer facing the cathodic 
chamber (geometric active surface area of 1 cm2). An anion exchange 
membrane (Fumasep, FAA-3-PK-130) was used to separate the anodic 
and cathodic chambers. All electrochemical tests were conducted on an 
Autolab PGSTAT204 instrument, with a Ag/AgCl electrode and Ni foam 
as the reference and counter electrodes, respectively. Potentials were 
converted to the RHE scale after iR correction. For performance stud-
ies, 1 M KOH was used as the electrolyte, and was circulated through 
the cathodic and anodic chambers at a constant flow rate of 10 ml min−1 
using peristaltic pumps. The flow rate of CO2 gas through the gas cham-
ber was kept constant at 50 cm3 min–1 using a digital gas flow controller. 
A gas chromatograph (PerkinElmer Clarus 600) equipped with a flame 
ionization detector and a thermal conductivity detector was used to 
analyse the gas products collected from the outlet of the gas chamber. 
1H NMR spectroscopy (600 MHz, Agilent DD2 NMR spectrometer) 
with water suppression was used to analyse the liquid products using 
D2O and dimethylsulfoxide as the lock solvent and internal reference, 
respectively.

DFT calculations
DFT calculations were performed with the Vienna Ab initio Simula-
tion Package (VASP) code50,51 using a similar set-up to our previous 
work52. The exchange correlation energy was modelled using the 

Perdew–Burke–Ernzerhof (PBE) functional within the generalized gra-
dient approximation53. Projector augmented-wave pseudo-potentials54 
were used to describe ionic cores. The cut-off energy of 450 eV was 
adopted after a series of tests. A Methfessel–Paxton smearing of 0.05 eV 
was applied to the orbital occupation during geometry optimization 
and the total energy computations. In all calculations, the atoms at all 
positions had Hellmann–Feynman forces less than 0.05 eV Å−1 and the 
electronic iteration convergence was 10−5 eV using the normal algo-
rithm. We calculated the surface energies for different facets of Cu and 
BaO (Supplementary Table 3). The crystal structure data for the differ-
ent facets of Cu and BaO are shown in Supplementary Table 4. Different 
interface models were built to simulate the Cu/BaO structure, with the 
configurations shown in Supplementary Figs. 18 and 19. The adsorption 
of reaction intermediates was simulated by constructing adsorption 
models of *HCCOH, *HCC and *HCCHOH on the BaO(111)/Cu(111) and 
Cu(111) models, with the configurations shown in Supplementary 
Figs. 22–24. During the adsorption simulations, the bottom two layers 
were fixed in the tested lattice positions while other layers, including 
adsorbates, were relaxed. Reaction energies were calculated on the 
basis of the computational hydrogen electrode model55. Solvent effects 
were included by using an implicit model, VASPsol56,57. The dielectric 
constant for water was set to a relative permittivity of 78.4. The Debye 
length for the electrolyte was set to 3.0 Å, which corresponds to an 
electrolyte concentration of 1.0 M. The effective surface tension was 
set to 0.525 meV Å–2. The differences between the implicit and explicit 
models on the Cu(111) surface are shown in Supplementary Table 5. We 
calculated the transition state of CO dimerization using the climbing 
image nudged elastic band (CI-NEB) method with a string constant of 
−5 eV Å–2. The energy plot generated by the CI-NEB method is shown 
in Supplementary Fig. 25. The configuration of the *OCCO transition 
state is shown in Supplementary Fig. 26, and the coordinates of all 
models calculated using the CI-NEB method can be found in the public 
GitHub repository in the data availability statement. The vibrational 
frequencies of the transition state are shown in Supplementary Table 
6; it should be noted that there is only one imaginary frequency. We cal-
culated the energy barrier for *OCCO for a constant potential at −0.75 V 
versus RHE (−1.6 V versus SHE) in the potential range of –0.55 to –0.8 V 
versus RHE, the range used for experimental testing (shown in Fig. 2b). 
The potential U was estimated according to the following equation:

U = −ϵF − ϕSHE
e (1)

where εF is the Fermi energy of the system and ϕSHE is the thermody-
namic work function of the SHE, which is around −4.30 eV for the 
PBE functional, e is charge of one electron58. We tested the calculated 
potential of zero charge on different facets of Cu using this set-up 
(Supplementary Table 7). The Bader charge was calculated using the 
Bader Charge Analysis script written by Henkelman and co-workers59. 
The charge transfer in C–OH and Cu–C in the *HCCOH intermediate on 
Cu and Cu/BaO is summarized in Supplementary Table 8.

Data availability
All data can be found in the public GitHub repository (https://github.
com/onealshu/CO2_alcohol_BaOCu.git) or from the corresponding 
authors upon reasonable request.
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