Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers

Tao Peng, Taotao Zhuang, Yu Yan, Jin Qian, Graham R. Dick, Jean Behaghel de Bueren, Sung-Fu Hung, Yun Zhang, Ziyun Wang, Joshua Wicks, F. Pelayo Garcia de Arquer, Jehad Abed, Ning Wang, Armin Sedighian Rasouli, Geonhui Lee, Miao Wang, Daping He, Zhe Wang, Zhixiu Liang, Liang Song, Xue Wang, Bin Chen, Adnan Ozden, Yanwei Lum, Wan Ru Leow, Mingchuan Luo, Debona Motta Meira, Alexander H. Ip, Jeremy S. Luterbacher,* Wei Zhao,* and Edward H. Sargent*

Cite This: https://doi.org/10.1021/jacs.1c08348

ABSTRACT: We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (−OCH₃) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes—molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C−OCH₃ bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm⁻², representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.

1. INTRODUCTION

The valorization of lignin—an abundant source of renewable organic carbon—into valuable organic chemicals offers to contribute to reducing reliance on fossil resources. Lignin monomers derived from the depolymerization of lignin include methoxylated aromatics⁷ that can function as renewable feedstocks⁴−⁸ in the production of methoxylated cyclohexane derivatives used in pharmaceutics⁴−⁸ since their methoxy group has antimicrobial⁹,10 and anticancer activity.¹² For example, 2-methoxy-cyclohexanol (2MC, consisting of −OCH₃ on cyclohexane ring) is an intermediate of high-value β-lactam antibiotics for human immunodeficiency viruses.¹³,¹⁴

Electrocatalytic hydrogenation (ECH) has been widely studied to valorize lignin monomers into cyclohexane derivatives.¹⁵−¹⁹ ECH uses an applied potential to produce adsorbed hydrogen on an electrocatalyst surface by splitting water,¹⁷ and this then directly hydrogenates the lignin aromatic monomers to cyclohexane derivatives.¹⁸,¹⁹ The ECH approach benefits from mild operating conditions (ambient temperature and pressure), avoids organic solvents, and offers routes to tune product selectivity by controlling potential.¹⁵,¹⁸−¹⁹,²¹−²³

Unfortunately, there exists a key difficulty in using ECH to produce methoxylated cyclohexane derivatives from lignin monomers: demethoxylation is thermodynamically favored under cathodic reducing conditions.¹⁵,₂⁶−₃¹ For example, guaiacol, a representative lignin-derived aromatic monomer with −OH and −OCH₃ groups (Figure 1a), has so far been electrocatalytically reduced to cyclohexanol and cyclohexanone as major products—and with the desired 2MC as only a minor product.¹⁵,³⁰ The demethoxylation reaction dominates¹⁵,²⁸,²⁹,³² because −OCH₃ is more prone to reduction than is the −OH.
As a result, high FE and current density toward 2MC are challenging to achieve. A more efficient ECH route for 2MC is thus needed.

We therefore sought a route to develop electrocatalysts to facilitate the hydrogenation of the lignin monomer guaiacol while suppressing demethoxylation. Preliminary computational studies allowed us to screen various single metal electrocatalysts, and from these we found that Pt and Rh possess high guaiacol adsorption energy, suggesting ECH performance greater than that of reference single metal electrocatalysts. We then selected metals (e.g., Au, Pd, and Cu) that would modulate the electronic properties of Pt and Rh to shorten the C−OCH₃ bond of adsorbed guaiacol on the electrocatalyst surface, addressing the energetics of key reaction intermediates to inhibit demethoxylation, thus promoting 2MC production.

Using the resultant electrocatalysts, we selectively hydrogenated guaiacol to a methoxylated cyclohexane derivative 2MC with a high FE and current density at ambient temperature and pressure. We report a pilot integrated lignin biorefinery that allows us to obtain methoxylated cyclohexane derivatives directly from wood biomass, showcasing the
selective hydrogenation and funneling of mixed lignin monophenolics to alkylated 2MC.

2. RESULTS AND DISCUSSION

Density Functional Theory (DFT) Calculations. We began by calculating the guaiacol adsorption energy (E_{ad-G}) on various single-metal electrocatalysts (Pt, Rh, Au, Ag, Ni, Pd, Cu, Ru, and Ir) by using a previously reported approach. This preliminary study highlighted Pt ($E_{ad-G} = 2.12$ eV) and Rh ($E_{ad-G} = 2.67$ eV) as potential candidates due to their high E_{ad-G} (Figure 1b). This motivated us to conduct preliminary experiments to obtain partial current densities toward 2MC (J_{2MC}) on Pt, Rh, and other single-metal electrocatalysts. By correlating E_{ad-G} with the measured J_{2MC} on Pt, Rh, and other single-metal electrocatalysts. By correlating E_{ad-G} with the measured J_{2MC}, we found that an increase in E_{ad-G} is linearly correlated to an increase in J_{2MC} (Figure 1b). This accorded with a picture in which increased E_{ad-G} is linked to an increase in guaiacol concentration on the catalyst surface. We then considered binary systems such as PtRh, PtAu, and RhAu alloys to increase the E_{ad-G} further. DFT calculations predict that PtRh would have a stronger E_{ad-G} compared to PtAu and RhAu, and thus an increased catalytic activity toward 2MC (Figure 1b). This prediction is further confirmed by the measured activity reported via J_{2MC}.

We then sought to suppress the reduction of the C−OCH$_3$ bond that is more prone to scission than C−OH (Figure S4). We reduced the C−OCH$_3$ bond length on the catalyst surface by modulating PtRh by using a third transition metal. Our preliminary DFT calculations on single-metal catalysts indicate that Au (with an adsorbed guaiacol C−OCH$_3$ bond length of 1.360 Å) has a stronger ability to localize the σ-electron and reduce the C−OCH$_3$ bond length compared to Pt (C−OCH$_3$ bond length = 1.365 Å), Rh (C−OCH$_3$ bond length = 1.378 Å), and other selected metals (Table S1). We predicted, therefore, that it would kinetically suppress the detachment of the −OCH$_3$ group. Combining the above two descriptors (E_{ad-G} and C−OCH$_3$ bond length), we obtained a contour diagram (Figure 1c) that suggests improved performance using ternary PtRhAu catalysts, also consistent with the increased J_{2MC}. PtRhAu catalysts offer both increased E_{ad-G} and shorter C−OCH$_3$ bond lengths; in contrast, PtRhPd and PtRhCu show no increase in J_{2MC}, finding us to weaker E_{ad-G} even though they have shorter C−OCH$_3$ bond lengths.
With the goal of further understanding the mechanism, we calculated the surface reaction network and the energetics of the intermediates (Figure 2a and Figure S4). The energy profile (Figure 2b) indicates that the rate-determining step along the pathway of adding hydrogen to the aromatic ring is the addition of the first pair of hydrogen atoms. Both PtRh (1.34 eV) and PtRhAu (1.29 eV) catalysts lead to a decrease in hydrogenation energy compared to Pt alone (1.49 eV), indicating a beneficial role of Rh in hydrogenation (Figure 2b). Undesired demethoxylation pathway (Figure 2c) is thermodynamically less favored with PtRhAu catalysts than with pure Pt and PtRh; i.e., Au inhibits demethoxylation and dehydroxylation. Among Pt, PtRh, and PtRhAu, only the ternary PtRhAu catalysts have an ECH pathway (1.29 eV for H1 pathway) that is more favored than the demethoxylation pathway (1.37 eV for M1 + M2 pathways). By comparing five elementary steps—some relating to the activity (adsorption, hydrogenation, and desorption) and others to selectivity (demethoxylation and dehydroxylation)—we concluded that the ternary PtRhAu catalysts show particular promise (Figure S7).

PtRhAu Alloy Catalysts and Structures. We synthesized PtRhAu, Pt, and PtRh using an electrochemical deposition method (Figure 3a) (see the Method section in the Supporting Figure 3. Electrocatalyst synthesis and structural characterization. (a) Schematic illustrating the fabrication of PtRhAu catalysts coated on carbon felt. (b) Synchrotron XRD spectra of Pt, PtRh, and PtRhAu samples, highlighting the peak shift and alloy structure. STEM images of PtRhAu nanoparticles, showing the dendritic morphology (c, d) and the lattice spacing (e). (f) EELS of PtRhAu indicating the substantially homogeneous distribution of Pt, Au, and Rh elements. (g) Pt L3-edge, (h) Rh K-edge, and (i) Au L3-edge XAS of PtRhAu, PtRh, Pt, Au, and Rh standards.
We first optimized the chemical composition of PtRh and PtRhAu catalysts to maximize the FE toward 2MC (Figure S8) and then investigated the nanostructure and morphology of the optimized catalysts. Synchrotron X-ray diffraction (XRD) peaks of PtRh (Figure 3b) shift to higher 2θ values compared to pure Pt, indicating a decreased lattice spacing of PtRh catalyst, while synchrotron XRD peaks of PtRhAu (Figure 3b) shift to lower 2θ values, indicating an increased lattice spacing of PtRhAu. These shifts are attributed to the shorter atomic radius of Rh (1.34 Å) and the larger atomic radius of Au (1.44 Å) compared to Pt (1.39 Å).36 The changes in lattice spacing indicate the formation of PtRh and PtRhAu alloys. The PtRhAu alloy has a dendritic morphology consisting of nanoparticles with diameters in the range of 5 and 20 nm (Figure 3c,d and Figure S10). The synchrotron XRD peak shifts, along with STEM and HRTEM images, indicate that PtRhAu has a lattice expansion (lattice spacing of 2.29 Å, Figure 3e) shift to lower 2θ values, indicating an increased lattice spacing of PtRhAu. These shifts are attributed to the shorter atomic radius of Rh (1.34 Å) and the larger atomic radius of Au (1.44 Å) compared to Pt (1.39 Å).36 The changes in lattice spacing indicate the formation of PtRh and PtRhAu alloys. The PtRhAu alloy has a dendritic morphology consisting of nanoparticles with diameters in the range of 5 and 20 nm (Figure 3c,d and Figure S10). The synchrotron XRD peak shifts, along with STEM and HRTEM images, indicate that PtRhAu has a lattice expansion (lattice spacing of 2.29 Å, Figure 3e) compared to Pt (2.26 Å), while PtRh has a lattice contraction (2.24 Å) (Figure S11). We performed electron energy loss spectroscopy (EELS) (Figure 3f) and energy-dispersive X-ray spectroscopy (EDX) (Figure S12) elemental mapping and found a substantially uniform spatial distribution of Pt, Au, and Rh in PtRhAu to within the 0.25 nm spatial resolution of the technique. X-ray photoelectron spectroscopy (XPS) analysis shows an atomic Pt:Rh:Au ratio of 43:9:48 on the surface of the optimized PtRhAu catalysts having the most selective hydrogenation activity (Figure S11), in line with the inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis (bulk atomic Pt:Rh:Au ratio of 48:8:44).

By tracking changes in X-ray absorption near-edge structure (XANES) (Figures 3g–i) and extended X-ray absorption fine structure (EXAFS) spectra (Figure S14), we examined the local electronic and coordination structure of Pt. The Pt L3-edge white-line intensity increases and Rh K-edge rising edge shifts to higher photon energy value, while the Au L3-edge white-line slightly decreases compared to their metallic phase, indicating electron transfer from Pt and Rh to Au. These are consistent with XPS spectra, wherein PtRhAu contains Pt 4f and Rh 3d shifted to a higher binding energy and Au 4f shifted to a lower binding energy37 (Figure S15). Pt L3-edge, Au L3-edge, and Rh K-edge EXAFS spectra for PtRhAu (Figure S14) show slight changes in atomic bonding for Pt and Au atoms and a significant change in atomic bonding for Rh compared to monometallic controls due to alloying.

Electrocatalytic Hydrogenation Performance. We first conducted ECH in a three-electrode H-cell system (Figure S22a) to optimize catalyst composition (Figure S8) and reaction conditions (e.g., pH, temperature, guaiacol concentration, and current density) (Figure S16). We achieved an FE of 47 ± 1% toward 2MC in an H-cell system using the optimized PtRhAu catalyst (a surface Pt:Rh:Au atomic ratio of 43:9:48 determined by XPS (Figure S8)) at an applied current density of 60 mA cm−2 (−0.15 V).1H NMR (Figure S17) and GC-MS (Figure S18) analyses confirm the production of 2MC from guaiacol after 1 h of ECH at 60 mA cm−2. PtRhAu shows superior selectivity toward 2MC at an applied current density of 60 mA cm−2 compared to other controls (e.g., Pt, Au, PtAu, PtRh, and AuRh alloys) (Figure S19). By analyzing the total FE to all organic products and hydrogen (Figure S21), we found that the total measured FE of 85% is lower than 100% in an H-cell equipped with a Naion 117 membrane. We attribute this to crossover of organics through the Naion 117 membrane.38 The bipolar membrane has been reported as a separator showing decreased crossover of organic products.39
We, therefore, sought to increase the total measured FE to 96% and the FE to 2MC from 47 ± 1% to 52 ± 1% by replacing the Nafion 117 membrane with the bipolar membrane.

We then sought to increase the FE and current density by using a flow-cell system (Figure 4a and Figure S22c) that lowers electrical resistance and improves mass transport compared to the H-cell system (Figure S22d). The flow-cell system is equipped with a bipolar membrane separator that shows a decreased crossover of organic chemicals (e.g., guaiacol and 2MC) (Figure S23) compared to Nafion 117 membrane.

PtRhAu in a flow-cell system shows an enhanced FE and current density compared to an H-cell system. The FE toward 2MC achieves 60 ± 2% at a current density of 60 mA cm$^{-2}$ (−0.07 V) and remains at 58 ± 1% at an applied current density of 200 mA cm$^{-2}$ (−0.12 V) (Figure 4b). The FE and partial current density (116 ± 3 mA cm$^{-2}$) toward 2MC are 1.9x and 4.1x greater than the best prior reports (an FE of 31%38 and a partial current density of 28 mA cm$^{-2}$,12 Table S3). The FE decreases significantly at current densities from 300 to 500 mA cm$^{-2}$: hydrogen evolution reaction dominates at these higher current densities (higher applied reducing potential). PtRhAu catalysts convert 95% of the guaiacol, providing a 76% selectivity toward 2MC at 200 mA cm$^{-2}$ over the course of a 5 h reaction (Figure S24).

Comparing the product distribution of PtRh and Pt (Figure 4c) indicates that incorporation of Rh increases selectivity toward hydrogenated products (e.g., cyclohexanol, cyclohexanone, 2MC, and 2-methoxy cyclohexanone), suggesting that Rh promotes the hydrogenation of guaiacol. With the further incorporation of Au, the ternary PtRhAu catalysts enable higher FE toward 2MC and suppress the formation of demethoxylated byproducts (cyclohexanone and cyclohexanol).

We explored the stability of the ternary catalysts by performing ECH of guaiacol. We first investigated the catalyst stability by using in situ XAS (Figure S25), suggesting the excellent stability of PtRhAu catalysts during the ECH of guaiacol. The PtRhAu maintains an FE of above 50% toward 2MC at a constant current density of 200 mA cm$^{-2}$ (−0.15 V) for 60 h of continuous operation in a flow-cell system (Figure 4d and Figure S26). SEM images (Figure S27), HRTEM, STEM with EDX mapping (Figure S28), and XPS (Figure S29) show that PtRhAu catalysts supported on carbon felt maintain their morphological and compositional features over the course of 60 h of operation.

We conducted a brief techno-economic analysis (TEA) to estimate the plant-gate levelized cost of 2MC from ECH of guaiacol in a flow-cell system (TEA details in the Supporting Information text and Figure S30). The TEA indicates that the plant-gate levelized cost of 2MC depends mainly on current density. The lowest economically feasible current density on PtRhAu electrocatalysts is 5 mA cm$^{-2}$, indicating that the plant-gate levelized cost of 2MC equals its market price of $431/kg at 5 mA cm$^{-2}$ (Figure S31a). Increasing current density from 5 to 200 mA cm$^{-2}$ lowers the plant-gate levelized cost of 2MC to $24/kg because larger current densities decrease the needed electrode surface area and the associated capital cost (electrolyzer, catalyst, and membrane costs) (Figure S31c). PtRhAu electrocatalysts show the lowest plant-gate levelized cost of 2MC at 200 mA cm$^{-2}$. However, a further increase in current density beyond 200 mA cm$^{-2}$ slightly increases the plant-gate levelized cost of 2MC, since increasing current density to more than 200 mA cm$^{-2}$ lowers the FE and increases full-cell potential (Figure S31e), which increases the electricity cost.

Mechanistic Investigations. We investigated the reaction mechanism by using reaction intermediates using electrode-potential-dependent in situ Raman spectra (Figure 5) and in situ infrared reflection–absorption spectroscopy (IRRAS) (Figure 6a). We associate the characteristic peaks from 0 to −0.37 V versus RHE with the ECH of guaiacol. PtRhAu has a wider electrochemical potential window (0 to −0.14 V) compared to Pt (0 to −0.14 V) (Figure S33). The in situ Raman spectra of PtRhAu show intense peaks associated with the guaiacol adsorption (930, 1069, and 1597 cm$^{-1}$)41,42 and hydrogenation reaction (band between 1250 and 1500 cm$^{-1}$)43 indicating favorable adsorption and ECH of guaiacol on the PtRhAu catalyst surface (detailed in Figure S33). Compared to Pt (Figure S33a), the PtRhAu catalyst shows a decreased peak intensity at 997 cm$^{-1}$ (corresponding to the intermediate adsorbed phenol44) caused by C−OCH$_3$ cleavage of guaiacol via demethoxylation pathway M1 (Figure 2a) in a potential range of −0.09 and −0.18 V, indicating the suppression of demethoxylation. In contrast, Pt shows an evident peak at 997 cm$^{-1}$ between −0.06 and −0.14 V (Figure S33b,c). This indicates that the PtRhAu alloy can suppress the C−OCH$_3$ cleavage in a potential range of −0.09 and −0.18 V. In situ IRRAS of PtRhAu (Figure S34) shows intense peaks related to the adsorption and ECH of guaiacol, along with suppressed peak related to C−OCH$_3$ cleavage, confirming suppressed demethoxylation on PtRhAu catalyst surface.

Integrated Lignin Biorefinery to Produce Methoxylated Cyclohexanes from Wood. We then sought to develop an integrated lignin valorization approach to upgrade wood to a methoxylated cyclohexane derivative 2-propargyloxyacyclohexanol (2MP4C) (1) (Figure 5). Compared to 2MC, 2MP4C has an additional alkyl side-chain that has the potential to control drug delivery in human cells.45 A lignin-derived monomer with a para-substitution 4-propylguaiacol (4PG) (2) was first produced by using a series of aldehyde-assisted fractionation of pine wood, hydrogenolysis, and purification processes (Figure S35a)46,47 The 4PG was then electrocatalytically hydrogenated by using PtRhAu catalysts in

![Figure 5](link)
a flow-cell system equipped with a bipolar membrane, achieving an FE of 56%, a conversion rate of 99%, and a selectivity of 90% toward the target product at a current density of 50 mA cm$^{-2}$ (Figure 6b and Figure S36). In addition, a less purified lignin-derived oil obtained from birch wood containing a mixture of para-substituted 4PG and 4-propylsyringol (4PS) monomers (Figure 6c and Figure S35b) was selectively hydrogenated and funneled to 2M4PC with good overall yield (Figure 6d).

3. CONCLUSIONS

Electrochemical measurements taken together with density functional theory calculations suggest that the Pt catalysts modulated with Rh and Au steer the intermediate energetics on PtRhAu catalysts to increase guaiacol coverage, foster hydrogenation, and suppress demethoxylation. X-ray studies show electron transfer from Pt and Rh to Au and corresponding changes in local coordination structure. In situ Raman further reveals key reaction intermediates, indicating roles for Rh and Au in improving the hydrogenation of guaiacol and inhibiting the demethoxylation reaction on PtRhAu catalysts. We report a record FE of 58% and a partial current density of 116 mA cm$^{-2}$ toward a high-value methoxylated cyclohexane derivative 2-methoxycyclohexanol (2MC) from guaiacol. We further achieved an integrated lignin biorefinery from wood, including a syringyl-rich hardwood stream, to a methoxylated cyclohexane derivative, indicating that PtRhAu electrocatalysts selectively hydrogenate and funnel wood-derived lignin monomers to a methoxylated cyclohexane derivative with suppressed demethoxylation reaction. The strategy suggests a means to valorize biomass to methoxylated cyclohexane derivatives.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c08348.

Detailed information about simulation of nanostructure of PtRhAu catalysts, structure investigation, synchrotron XRD analysis, HRTEM, STEM, EELS, XAS analysis, XPS, ICP-AES, in situ Raman, electrochemical experiments, 1H NMR, stability, liquid product analysis, and the production of lignin oil from wood (PDF)

AUTHOR INFORMATION

Corresponding Authors
Jeremy S. Luterbacher — Laboratory of Sustainable and Catalytic Processing, Institute of Chemicals Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, VD CH 1015, Switzerland; orcid.org/0000-0002-0967-0583; Email: jeremy.luterbacher@epfl.ch
Wei Zhao — Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China;
Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.1c08348

Author Contributions
T.P., T.Z., Y.Y., and J.Q. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Cathleen Crudden from the Queen’s University and Dr. Yuguang C. Li from the University of Toronto for fruitful discussions. The authors thank Y.-F. Liao for the technical support of synchrotron XRD at the BL-12B2 beamline at SPring-8 (NSRRC). The authors thank Natalie Hamada from the Canadian Centre for Electron Microscopy (CCEM) and Zhi-Yi Hu and Lei Xia from the Nanostructure beamline at SPring-8 (NSRRC). The authors thank Natalie Hamada from the Canadian Centre for Electron Microscopy (CCEM) and Zhi-Yi Hu and Lei Xia from the Nanostructure beamline at SPring-8 (NSRRC). The authors thank Natalie Hamada from the Canadian Centre for Electron Microscopy (CCEM) and Zhi-Yi Hu and Lei Xia from the Nanostructure beamline at SPring-8 (NSRRC). The authors thank Natalie Hamada from the Canadian Centre for Electron Microscopy (CCEM) and Zhi-Yi Hu and Lei Xia from the Nanostructure beamline at SPring-8 (NSRRC). The authors thank Natalie Hamada from the Canadian Centre for Electron Microscopy (CCEM) and Zhi-Yi Hu and Lei Xia from the Nanostructure beamline at SPring-8 (NSRRC).
REFERENCES

(31) Gandhi, M.; Rajagopal, D.; Senthil Kumar, A. Facile electrochemical demethylation of 2-methoxyphenol to surface-confined catechol on the MWCNT and its efficient electrocatalytic hydrazine oxidation and sensing applications. *ACS Omega* 2020, 5 (26), 16208−16219.

