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Discovery and synthesis of a new,

blue-emitting perovskite-like

material
Here, we report a high-throughput experimental framework for the discovery of

new perovskite single crystals. We use machine learning (ML) to guide the

sequence of ever-improved robotic synthetic trials. We perform high-throughput

syntheses of perovskite single crystals and characterize the outcomes with

convolutional neural network-based image recognition. We then use an ML model

to predict the optimal conditions for the synthesis of a new perovskite single

crystal; as a result, we report the first synthesis of (3-PLA)2PbCl4.
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Progress and Potential

Metal halide perovskites have

seen significant interest for their

applications in optoelectronic

devices. Perovskites are tertiary

and quaternary compounds with

an exceptionally large chemical

space, yet perovskite

development has largely been

limited to a restricted set of

chemical constituents. Here, we

report a high-throughput

experimental framework for the

discovery of new perovskite single
SUMMARY

Perovskites have seen significant research interest in the last decade. As ternary

and quaternary compounds, their chemical space is exceptionally large, yet

perovskite development has been limited to a restricted set of chemical constit-

uents often discovered through trial and error. Here, we report a high-

throughput experimental framework for the discovery of new perovskite single

crystals. We use machine learning (ML) to guide the sequence of ever-improved

robotic synthetic trials. We perform high-throughput syntheses of perovskite

single crystals with a protein crystallization robot and characterize the

outcomes with the aid of convolutional neural network-based image recogni-

tion. We then use an ML model to predict the optimal conditions for the synthe-

sis of a new perovskite single crystal, enabling us to report the first synthesis of

(3-PLA)2PbCl4.This material exhibits strong blue emission, illustrating the

applicability of the method in identifying new optoelectronic materials.
crystals. We use machine learning

to both characterize our products

and guide the next cycle of

experiments. As a result, we

synthesize single crystals of a new

perovskite, which we show has

strong blue emission. This work

demonstrates the efficacy of

combined high-throughput

experimentation and machine

learning for accelerated materials

discovery.
INTRODUCTION

Among strategies used to improve performance in perovskite optoelectronic

devices, compositional engineering has been particularly effective;1–3 however, of

the full chemical space available, only a relatively few elements and chemicals

have been employed. Despite rapid improvements in performance, the best

perovskite devices are still reliant on lead, and suffer from questions regarding

long-term operational stability.4–8 There thus remains significant interest in devel-

oping new, environmentally benign, stable perovskite materials. Density functional

theory (DFT) has been used to predict new perovskite compounds in recent

years,9–11 but the number of compounds explored is orders of magnitude below

what the chemical space permits.12 In addition, it is often difficult to synthesize theo-

retically stable materials: as an example, chloride-based perovskites may be used as

blue emitters but are underexplored in comparison with the iodide and bromide

counterparts. This is in part due to the sensitivity of chloride-perovskites to synthesis

conditions.13

High-throughput experimentation (HTE) has been applied to perovskites for the

evaluation of the stability of wide-band-gap materials,14 and more recently the dis-

covery of new perovskite compounds.15 HTE rapidly screens synthetic conditions

but is often limited by the rate at which the experiments can be properly classified.

Machine learning (ML) has emerged as an attractive technique to augment and

accelerate DFT calculations16,17 and has seen increasing use in the prediction of

new perovskites and their properties.12,15,18–20 In general, there are two approaches

to using ML to predict materials properties: in the first, the database with which the
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ML models are trained is generated by computations; in the second, experiments

are used to generate the database.

Here, we present the high-throughput synthesis andML-aided analysis of perovskite

single crystals for optoelectronic applications. Single crystals of perovskites have

been shown to possess long diffusion lengths and low trap-state densities21 and

have shown improved stability in optoelectronic devices.22,23 Single crystals also

enable the study of fundamental properties of materials without contributions

from grain boundaries or thin-film formation dynamics and are thus desirable

when screening new materials. The vapor-assisted antisolvent method of synthesiz-

ing perovskite single crystals is relatively fast and can be executed at low tempera-

tures;21 however, this method is sensitive to the concentration of precursors, the

combinations of solvents chosen, and the type of antisolvent used. When attempt-

ing to synthesize a new material, it is necessary to use a fine mesh of synthetic

combinations: for a single new perovskite compound, we estimate �560 experi-

ments are necessary to broadly explore the synthetic space (20 concentrations,

four different antisolvents, and seven combinations of three solvents). This number

grows exponentially as different precursors are considered. Growth of new

perovskite single crystals is thus well suited for acceleration with HTE and ML.

Using a protein drop setter,24 we prepared 96 independent crystallization condi-

tions in a matter of minutes, and imaged, autonomously, the crystals at different

stages of growth. With a dataset of 7,000 images, we trained a convolutional neural

network (CNN) to recognize whether crystals had been grown. This classifier was

then used on a broader dataset of 25,000 images. This combined high-throughput

and ML classification enabled the rapid exploration of an experimental space for a

given chemical space. Using the results from this exploration, we then trained an

ML model to guide future experiments for crystal growth of a new perovskite: the

ML model takes a given chemical space and returns the experimental parameters

most likely to result in a successful crystal growth. We used this model to synthesize

a new perovskite-like material with a direct band gap at 4 eV that emits at blue

wavelengths. The synthetic conditions that resulted in successful crystal growth

were restrictive, and it is only with the finely tuned experimental net from HTE

combined with the accelerated characterization that we were able to discover the

optimal conditions.
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RESULTS AND DISCUSSION

High-Throughput Experimentation

We used the antisolvent vapor-assisted crystallization method21 to grow single

crystals, as this method yields high-quality single crystals in a relatively short time

and can be carried out at room temperature. We prepared solutions containing

the perovskite precursors and then sealed these in an environment containing an

antisolvent, the vapor of which slowly diffuses into the precursor solution and

induces crystallization (Figure 1A). A schematic of the trays used by the drop setter

is shown in Figure 1B. Each tray contains 96 containers, and each container contains

a large well and three smaller drops. The antisolvent is added to the well, and the

precursor solution is added to the drops. Notably, the precursor solution can be

combinatorially drawn from up to eight different starting sources: this allowed us

to readily combine different precursor solutions with different solvents, allowing a

fast and systematic exploration of different concentrations in different solvents, an

important consideration.21 This experimental design is based on a commonly

used method for protein crystallization in structural biology.
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Figure 1. The High-Throughput Experimentation and Classification Process

(A) The antisolvent vapor-assisted crystallization method.

(B) Diagram of the 96-cell trays used for crystallization experiments.

(C) A 3-h time lapse of PEAPbBr crystal formation.

(D) The full ML pipeline for accelerated material discovery.
We focused our efforts on two-dimensional (2D) perovskites, because these mate-

rials have recently shown excellent photoluminescent quantum yields25 and promise

regarding improved stability in comparison with their bulk counterparts;6,26,27 these

materials pose an additional challenge because of the high dimensionality of the

combinatorial chemical space in comparison with their three-dimensional (3D)

counterparts. We focused initially on a known perovskite, phenethylammonium

lead bromide, (C8H12N)2PbBr4 (PEAPbBr). We sought, as proof of principle, to repli-

cate the growth of single crystals of PEAPbBr that we have previously reported,25

and thus prepared several experiments with different conditions for this material.

Crystallization times varied from a few hours to a few days depending on the

combination of experimental parameters. For PEAPbBr, crystallization typically

occurred within a matter of hours. We obtained high-quality crystals and imaged

them autonomously (Figure 1C). In addition to determining whether a crystal

formed, we wanted to probe the photoluminescence of the crystals. We installed

a UV light-emitting diode in the imaging system and imaged the crystal while

illuminating it with a UV source; the PEAPbBr crystals showed strong luminescence

(Figure S1), and using a color (RBG) imaging array, we estimated the central emission

wavelength and relative brightness of different crystals (Figure S2).

After demonstrating that the protein crystallization robot and imaging system could

successfully be employed for perovskite single-crystal growth, we developed an

experimental pipeline for the discovery and synthesis of new perovskites. We first

chose a desired chemical space to explore and designed an initial set of parameters

to investigate. We employed HTE with the robot and then used a CNN to classify

each experiment as a success (i.e., a crystal grew) or a failure (i.e., no crystal). Using
940 Matter 2, 938–947, April 1, 2020



the parameters that correspond to each successful or unsuccessful experiment, we

used a k-nearest-neighbors regression model to explore the next set of experiments

that were likely to yield successful crystal growth, which were then carried out by the

robot. The pipeline is illustrated in Figure 1D.

Image Recognition for Crystal Classification

TheML thrusts of this pipeline are two-pronged: the first involves training a CNN that

can recognize crystals from non-crystals, and the second aims to train an ML model

that relates experimental parameters of crystal growth to the likelihood of success of

the crystal growth. Because we had both successful and unsuccessful experiments

with PEAPbBr crystals, we used these experiments to train the neural net.

Seven thousand images of PEAPbBr experiments were collected on 576 starting

conditions from six trays. There were three types of results from these experiments:

no crystallization; a polycrystalline precipitate was formed; or a perovskite single

crystal was formed.

These images were labeled into two categories: bad crystals or no crystals (i.e., wells

with no precipitate, wells with polycrystalline materials, or wells with small poorly

formed crystals, Figures S1A–S1C) and good crystals (i.e., large crystals even in

the presence of some polycrystalline product, Figures S1D and S1E). Before

preprocessing each image, we further categorized the dataset by container and split

the data into train, validation, and test sets, ensuring that each container was only

present within one of those sets. This accounted for minimal differences in acquired

images from the same container at different times; otherwise the performance of a

trained network could appear artificially high due to the validation and test sets

containing data from the same containers used to train the network (i.e., an almost

duplicate image from a different time step in the same container would be present in

the validation and test sets).

We augmented the data before training, as this has been shown to improve image

recognition of protein crystals with neural networks (NNs).28 We augmented random

sets of images chosen from the initial dataset by adjusting the brightness values

by G32 (out of 255), adjusting the saturation values from 50% to 150%, adjusting

the hue values by G70 (out of 180), and rotating the image by either 90�, 180�, or
270�. We kept both the augmented and initial images for training: by applying

augmentations proportionally between positive and negative samples, we obtained

a 1:1 ratio of images with a crystal and images without a crystal (i.e., we generated

more augmented images for the class that had fewer initial samples). Augmented

images were kept in the same set (training, validation, or testing) as their parent

image.

After the dataset had been generated, we calculated the spatial Fourier transform

(FT) for each image. We reasoned that crystals would possess a certain length scale

that would be readily detected in Fourier space. We passed the FT of each image as

an additional input to the CNN to ensure that any spatial frequency information was

readily available as an input (Figure 2A). We trained a separate channel for each of

the RBG and FT images for each data point, reasoning that as they have a different

feature space, the architecture that maximizes the probability of a correct prediction

would also be different. The CNN architecture is also depicted in Figure 2A.

An extensive hyperparameter search was conducted on both a single-branch

architecture (RGB) and a dual-branch architecture (RGB + FT) CNN. Using identical
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Figure 2. Development of the CNN for Crystal Recognition

(A) The CNN architecture for crystal image recognition split into two branches for color images and

their corresponding Fourier transform.

(B) Results of training the best CNN versus a single-branch architecture, only taking a color image

as input.

(C) Confusion matrix of the best CNN against a test dataset.
training, validation, and test datasets, the best RGB + FT network was �5% more

accurate than that without the FT (Figure 2B) and was thus chosen as the crystal

recognition algorithm. The optimized NN recognizes crystal formation with 95%

accuracy, and its overall performance is summarized in the confusion matrix for

the test set in Figure 2C. The complete results of the training along with comparisons

between both types of networks can be seen in Figures S2–S4.

The addition of the FT as a separate channel significantly improved the performance

of the model. When only the RGB values were used to train an NN, the hyperpara-

meters did not converge during optimization (Figure S2). Fourier space information

assists in obtaining a reliable model and enabled us to apply the model to a new set

of crystals.
Predictive ML Model

Once we successfully trained a CNN to recognize crystals, we sought to address the

second thrust of the ML algorithm: parameter space exploration to guide subse-

quent experiments. We also sought to expand the chemical space to new perovskite

materials. We continued to focus on precursors of 2D perovskites but wished to

synthesize a new material that had not previously been made: we chose to use

3-picolylammonium (3-PLA) as the bulky ligand in the 2D perovskite structure, as

we reasoned that the amine-substituted benzyl ring would have chemical properties

different from those of the traditional PEA ligand.
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Table 1. Input Features for Parameter Exploration

Feature Constituents/Description

DFT features the potential, Fermi energy, HOMO, HOMO-1, LUMO, LUMO-1,
total energy, and polarizations for each of the A-ligand, A, B, and X
sites of the perovskite

Concentrations one feature each for the A-ligand, A, B, and X sites of the perovskite

Solvent ratios the DMSO/DMF/GBL ratio

Volume of liquid the volume of antisolvent in each of the 100-mL wells and the volume
of precursor solution in each of the 1-mL well

Time a time for when the crystal is characterized

Crystallization whether or not there is a crystal present in the well at a given time

Visible photoluminescence whether or not there is photoluminescence in the visible spectrum at
a given time

HOMO, highest occupied molecular orbital; LUMO, lowest unoccupied molecular orbital.
We explored a chemical space with different precursors, solvents, and antisolvents, as

shown in Table S1. The experimental parameters have significant impact on the crystal-

lization of perovskites: for PEAPbBr crystals grown with same antisolvent (isopropanol

[IPA]), strikingly different products are obtained for different dimethylformamide

(DMF)/dimethyl sulfoxide (DMSO) ratios (Figure S6). Changing the concentration greatly

affects the quality of the resulting crystal. In the containers in which the precursors were

dissolved only in DMF, crystals formed at higher concentrations are larger but impure,

with crystallites forming throughout. At low concentrations not enough crystallization

occurs, and this results in formation of small patches of crystals. The large gradient in

crystal quality as a function of synthetic parameters highlights the need to use HTE

and ML to probe the experimental space intelligently.

When we began to synthesize (3-PLA)2PbX4 (PLAPbX; X = Cl, Br, I), we found it

difficult to obtain crystals. There are optimal concentrations at which crystals form

rather than a continuous trend. Crystals grown with IPA are obtained at concentra-

tions of 0.5 M and 0.25 M, but not at 0.33 M (Figure S7). Our initial experiments

had a very low success rate (�1%), and the crystals that did grow often took �72

h. As this rate and time contrasted with those of PEAPbBr crystals, we aimed to

accelerate the crystal discovery process with a predictive ML model. We note that

our initial attempts at synthesizing these crystals in bulk were unsuccessful.

We fingerprinted each experiment by using a combination of parameters (Table 1).

The parameters included DFT features for each A-site, B-site, and X-site component,

concentrations of each component, solvent ratios (including g-butyrolactone [GBL]),

volume of the precursor solution added, and the time since the experiment began.

The DFT features chosen are those readily available from the Vienna Ab initio

Simulation Package and are a subset of those employed when using Voronoi

tessellation.12,29 Using properties from standard DFT accelerated the workflow,

avoiding reliance on expensive calculations. We compared different ML models30

and found that an optimized k-nearest-neighbors classifier had the best accuracy

(88%, Table S2). The model was trained on 300 experimental data points. Only

distinct experiments were used (i.e., different time steps were not used as separate

data points). The model hyperparameters were optimized using Tpot.31

Using the ML regressor, we mapped the likelihood of crystallization onto the

experimental space of both PEAPbBr and PLAPbX. We note that the ML model

was the same for both PEAPbBr and PLAPbX; different chemical spaces input to

the model yielded different experimental spaces to explore. This eliminates the
Matter 2, 938–947, April 1, 2020 943



Figure 3. ML Exploration of the Experimental Space for New Perovskite-like Compounds

(A and B) Results of the parameter exploration for the (A) (PEA)2PbBr4 chemical space and (B)

(3-PLA)2PbBr4 chemical space crystallized using IPA and only a mixture of DMSO and DMF as a

solvent. The blue and red dots indicate crystallization and no crystallization, respectively, and were

used in the training of the algorithm, whereas the crosses are from a new experiment.

(C and D) Images of a successful (left) and unsuccessful (right) outcome for the (C) (PEA)2PbBr4 and

(D) (3-PLA)2PbCl4 experiments.
need to train a new model to explore new chemical spaces. Subsets of this chemical

space are shown in Figure 3. Figure 3A shows the likelihood of crystallization for

PEAPbBr with IPA as the antisolvent, shown as a function of DMSO and DMF ratios.

The blue dots show experiments that were successful whereas the red dots show

experiments that were unsuccessful. The crosses indicate experiments that were

not included in the training set of the regressor.

Figure 3B shows the mapping of PLAPbBr crystals’ experimental space; we note that

prior to running this algorithm we had fewer than five successful experiments with

PLAPbBr in more than 288 attempts. However, with ML-aided experimental design

we were able to double the number of successful experiments with just one

experimental cycle (�12 successful experiments in 96 attempts). The predictions

indicated a very small chemical space in which crystallization was likely to occur, and

the suggested experiments were conducted in the chemical space of higher probability.

We were also able to synthesize PLAPbCl crystals (Figure S7). After running the ML

algorithm, we obtained high-quality crystals from the robotic synthesis; we therefore

sought to upscale the synthesis for further analysis. Figure 4 shows the results of the

synthesis. The new perovskite material has a direct band gap at 4 eV and has strong

photoluminescence intensity centered at �2.6 eV. We measured the single-crystal

X-ray diffraction (XRD) of the newly synthesized material: interestingly, the predicted

2D structure was not formed but, instead, we obtained a perovskite-like structure in

which the layered Pb-Cl framework is alternately intercalated and bonded with the

3-PLA ligand (Figure S8). This new structure appears to be more readily grown using

chlorine compared with using bromine. This contrasts with traditional 3D and 2D

perovskites, in which the Br� and I� variants are favored over the Cl� variants. We

obtained powder XRD of the crystals and found that the pattern matches the

simulated XRD pattern from the crystallographic information file.
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Figure 4. Bulk Synthesis of PLAPbCl Crystals

(A) Images of the synthesized crystals.

(B) Absorption and PL intensity of the single crystal, showing a direct bandgap at �4 eV.

(C) Powder XRD of the obtained crystals, in comparison with the simulated diffraction pattern

extracted from the single-crystal XRD. The experimental powder diffraction and simulated patterns

are in good agreement.

(D) The refined crystal structure of the new perovskite-like material viewed along the c axis.
Conclusions

We developed a framework for high-throughput synthesis and characterization of

perovskite single crystals using the antisolvent method. We first used a known

synthesis to train a CNN for crystal recognition to allow autonomous characterization

of the outcomes of the robotic experiments. High-throughput experiments were

carried out by a facile method using a protein crystallization robot, and images

were captured autonomously using a commercial robot. We used the high-

throughput capabilities to generate a dataset relating the experimental and chem-

ical parameter space to crystal growth and used this dataset to train a tree-basedML

regressor. Using the ML regressor, we synthesized crystals of a new perovskite-like

material, (3-PLA)2PbCl4. We then successfully performed a scaled-up synthesis of

the (3-PLA)2PbCl4 perovskite and found that it has a direct band gap at 4 eV with

blue emission. This work presents a new route to accelerate the discovery of new

perovskites.
EXPERIMENTAL PROCEDURES

CNN

Image augmentation was done using the OpenCV Python library.32 We imple-

mented both approaches in the TensorFlow-33powered python module Keras.34

Previous implementation of both methodologies to atomistic systems was based
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on a very widely used VGGNet35 architecture that was successfully used in image

classification of the 1000-class ImageNet 2012 database. Following that approach,

we optimized the hyperparameters of our VGGNet-like network, namely: the size of

the 3D convolutional filters, the number of filters, the presence of a reducing convo-

lutional layer, regularization, dropout, and type of activation function. These param-

eters were optimized using kopt36 (forked from the original hyperopt)37 Python

library.

ML Regressor

We represented each experiment with a feature vector as outlined in Table 1. We opti-

mized our ML algorithms using a genetic-algorithm optimization of the architecture of a

random forest-based regressor as implemented in the tpot31 Python module. We used

five generations with a population size of 20 architectures for all representations.

DATA AND CODE AVAILABILITY

All experimental data and source code are available upon request.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.matt.

2020.02.012.
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