The most efficient perovskite solar cell devices use Pb(II); however, the toxicity of lead and its decomposition products represent possible obstacles to their widespread commercial and carbon impact.1,2 Pb from hybrid perovskites may enter plants—and consequently the food cycle—10x more efficiently than do other Pb sources.3 Although consumer solar modules are encapsulated, there remain concerns about their distribution, maintenance, and recycling.4 Replacing lead with more environmentally benign metals, without compromising device efficiency, is of utmost importance.

Recent high-throughput computational studies evaluating the electronic properties of thousands of ABX\textsubscript{3} perovskites revealed that only lead and tin perovskites can deliver solar cell relevant bandgaps and absorption coefficients.5,6 Replacing Pb with Sn is a promising path; however, Sn(II) undergoes undesired oxidation forming Sn(IV) and charge carrier recombination centers, leading to a significant loss of photovoltage in solar cells.7 Innovative approaches, including dopant additives, a reducing atmosphere, and comproportionation, have increased the record power conversion efficiency for Sn-based devices, approaching currently only half of that for Pb-based solar cells.8

In this Viewpoint, we report that the solvent conventionally used in the fabrication of perovskite films, dimethyl sulfoxide (DMSO), oxidizes Sn(II) to Sn(IV). Using the combination of nuclear magnetic resonance (1H NMR) and X-ray absorption near-edge spectroscopy (XANES), we find that the DMSO/Sn(II) pair undergoes an irreversible redox reaction forming dimethylsulfide (DMS) and Sn(IV) in solution.

Recently, Hamill et al. showed that DMSO induces the conversion of methylammonium into dimethylammonium cation in CH\textsubscript{3}NH\textsubscript{3}I + PbI\textsubscript{2} solutions at 150 °C.9,10 DMSO is also known as an oxidation agent for Sn(II) in acidic medium;11 given that perovskite organic cations are Lewis acids, we hypothesized that DMSO can oxidize Sn(II) in perovskite solutions.

To check this hypothesis and provide insight into reaction/decomposition pathways in Sn(II)-containing perovskite solutions, we performed a series of experiments. We prepared a perovskite solution in DMSO by dissolving FAI (where FA is formamidinium cation) and SnI\textsubscript{2}, sealed the vial, and heated it at 120 °C for 5 h, all in an inert atmosphere.

We noticed a significant change in color (Figure 1); the solution became much darker, indicating the oxidation of Sn(II).12 On the other hand, the dimethylformamide (DMF)-based solution showed an only negligible change in color in the analogous experiment. Though perovskite solutions are generally not heated for such a long time, this accelerated test can provide insights about the processes that occur in solution when heating the solution to dissolve the precursors or annealing spin-coated film with the leftover DMSO. It does not take much Sn4+ doping (<0.1%) in ASnI\textsubscript{3} perovskites to turn the material’s p-type conductors and render them inactive as solar photovoltaic absorbers.

1H NMR measurements of the corresponding solutions revealed the presence of DMS (at 2.07 ppm)11 even after 10 min of heat treatment at 120 °C (Figure 2a,b). Longer heat treatment led to more DMS formation (Figure S1). A blank sample without FAI and SnI\textsubscript{2} was treated in the same way, and it showed no DMSO decomposition (Figure S2). Notably, FAI or PbI\textsubscript{2} DMSO-based heat-treated solutions under the same conditions exhibited trace amounts of DMS (Figures S3–S5).

Variable-temperature 1H NMR measurements showed that DMS formation commences at 100 °C in the presence of Sn2+ ions (Figures S6 and S7).

We then conducted X-ray absorption near-edge spectroscopy (XANES) on the solutions before and after heat treatment. The XANES spectra of S K-edge confirmed that DMSO was the most likely reaction product.
orcid.org/0000-0002-3850-666X
orcid.org/0000-0003-0861-1407
orcid.org/0000-0003-0396-6495

ppm and 8.47 ppm correspond to the (ppm is assigned to the methyl protons of DMS. The peaks at 8.82 ppm and 8.47 ppm correspond to the (−NH₂) protons, while the peak at 7.86 ppm corresponds to the (−CH−) proton of formamidinium cation.¹⁸ XANES (c) Sn L-edge and (d) S K-edge spectra before and after heat treatment.

Summary and Future Outlook. In sum, our work provides a piece of evidence that DMSO can oxidize Sn(II) at temperatures above 100 °C. DMSO has become a mandatory near-ubiquitous component in the fabrication of perovskite films, as it is known to be a good ligand in coordination chemistry, thus retarding crystallization and improving crystallite quality.¹⁶,¹⁷ Even the most minute Sn⁴⁺ amount in the structure can compromise solar cell photovoltage to <0.5 V, much less than the 0.9 V expected from the bandgap. If Sn-based solar cells are going to match the performance of Pb-based ones, all potential oxidation pathways should be prevented, urging the development of new, DMSO-free solvent systems for the synthesis of Sn-based perovskites with suppressed defect densities.

Makhsud I. Saidaminov (a)[1] orcid.org/0000-0002-3850-666X Ioannis Spanopoulos (a)[2] orcid.org/0000-0003-0861-1407 Jehad Abed Weijun Ke (a)[3] orcid.org/0000-0003-2600-5419 Joshua Wicks Mercouri G. Kanatzidis (a)[4] orcid.org/0000-0003-2037-4168 Edward H. Sargent (a)[5] orcid.org/0000-0003-0396-6495

Figure 2. ¹H NMR spectra of DMSO sample solutions (a) before and (b) after heat treatment at 120 °C for 10 min. The peak at 2.07 ppm is assigned to the methyl protons of DMS. The peaks at 8.82 ppm and 8.47 ppm correspond to the (−NH₂) protons, while the peak at 7.86 ppm corresponds to the (−CH−) proton of formamidinium cation.¹⁸ XANES (c) Sn L-edge and (d) S K-edge spectra before and after heat treatment.

partially reduced to DMS (emergence of a peak at 2470.5)¹⁴ after annealing at 120 °C under an argon atmosphere (Figure 2c). Similarly, distinct peaks corresponding to Sn⁴⁺ were observed in all the annealed solutions using the Sn L-edge,¹⁵ indicating Sn oxidation (Figure 2d). These findings indicate that the following reaction took place in solution:

2SnI₂ + 2(CH₃)₂SO → SnO₂ + SnI₄ + 2(CH₃)₂S

Summary and Future Outlook. In sum, our work provides a piece of evidence that DMSO can oxidize Sn(II) at temperatures above 100 °C. DMSO has become a mandatory near-ubiquitous component in the fabrication of perovskite films, as it is known to be a good ligand in coordination chemistry, thus retarding crystallization and improving crystallite quality.¹⁶,¹⁷ Even the most minute Sn⁴⁺ amount in the structure can compromise solar cell photovoltage to <0.5 V, much less than the ~0.9 V expected from the bandgap. If Sn-based solar cells are going to match the performance of Pb-based ones, all potential oxidation pathways should be prevented, urging the development of new, DMSO-free solvent systems for the synthesis of Sn-based perovskites with suppressed defect densities.

Makhsud I. Saidaminov (a)[1] orcid.org/0000-0002-3850-666X Ioannis Spanopoulos (a)[2] orcid.org/0000-0003-0861-1407 Jehad Abed Weijun Ke (a)[3] orcid.org/0000-0003-2600-5419 Joshua Wicks Mercouri G. Kanatzidis (a)[4] orcid.org/0000-0003-2037-4168 Edward H. Sargent (a)[5] orcid.org/0000-0003-0396-6495

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.0c00402.

Sample preparation, characterization information, and additional NMR spectra (PDF)

AUTHOR INFORMATION

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsenergylett.0c00402

Author Contributions

#M.I.S., I.S., and J.A. contributed equally.

Notes

Views expressed in this Viewpoint are those of the authors and not necessarily the views of the ACS. The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by the US Department of the Navy, Office of Naval Research (grant award no. N00014-17-1-2524 and N00014-17-1-2231). This work made use of the IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the International Institute for Nanotechnology (IIN). The authors thank the Canadian Light Source (CLS) for support in the form of a travel grant. XANES data were collected at the Soft X-ray Microcharacterization Beamline (SXRMB) at the Canadian Light Source with the assistance of Dr. Yongfeng Hu, Dr. Qunfeng Xiao, and Dr. Mohsen Shakouri.

REFERENCES

 (10) Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.; et al. Monolithic All-

Viewpoint

