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The electrocatalytic reduction of CO2 to valuable carbon-based 
chemical feedstocks offers a route to the long-term storage 
of renewable electricity that closes the carbon cycle1–8. The 

higher-order alcohol n-propanol is desired for its high volumetric 
energy density (27 MJ l–1) (ref. 9)—cost-effective renewable propa-
nol would offer a sustainable liquid fuel for existing internal com-
bustion engines.

It is of interest, therefore, to explore means of increasing selec-
tivity in favour of electrochemical propanol production10–12. With 
CO2-to-CO conversion now well established13,14, a subsequent elec-
trocatalytic CO-to-propanol conversion shows promise15–17; how-
ever, even here selectivities remain in the vicinity of 10% (refs 18,19), 
primarily owing to the preferred selectivity for C2 products.

Given that C3 formation can proceed via C–C coupling between 
C2 and C1 intermediates20, we hypothesized that modifying cata-
lysts to target C2 intermediate binding could potentially be used to 
promote C3 production.

We used finite-element method (FEM) simulations to study how 
a nanocavity confinement structure affects the binding and reten-
tion of C2 intermediates. This, we found, suppresses the net C2 
loss that otherwise curtails C3 production. We then implemented 
three-dimensional (3D) nanocavity Cu catalysts employing an in 
situ electroreduction strategy, starting from Cu2O nanoparticles 
(precatalyst) that exhibited an open structure.

Prior studies of porous catalysts exploited confined interme-
diates to some degree. One study used the confinement effect to 
explain a selectivity shift from C1 to C2 (ref. 21). Here we further 
apply the confinement effect to boost C3 production by extending 
the retention of C2 species, and we provide a comprehensive model 
that tracks the key species. The clearly mapped confinement model 
guides the design of catalysts, and enables a shift in selectivity away 
from C2 products that leads to higher C3 production. The optimal 
nanocavity catalyst reduces CO to propanol with a 21 ±​ 1% Faradaic 
efficiency at a conversion rate of 7.8 ±​ 0.5 mA cm−2 at −​0.56 V versus 
a reversible hydrogen electrode (RHE).

Results
FEM simulations. We hypothesized that a nanocavity structure 
could potentially concentrate C2 species via steric confinement 
and thereby limit the desorption of C2 intermediates and promote 
further conversion into a C3 product. We used FEM simulations 
to explore the prospects of cavity-enhanced C3 selectivity. Hollow 
spherical shells21–23 (with an outer diameter of 100 nm and an inner 
diameter of 60 nm) with circular openings of various central angles 
were used to represent nanocavities immersed in an aqueous elec-
trolyte (Supplementary Fig. 1a). In these simulations, CO molecules 
diffused to the surface (Fig. 1a and Supplementary Fig. 1b) and then 
were adsorbed and converted into C2 species at both the interior 
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and exterior surfaces of the nanoparticle (Fig. 1b and Supplementary 
Fig. 1c). The C2 species may then either desorb from the reactive 
surface as a C2 product, or be coupled with a CO molecule to form 
a C3 product (Fig. 1c and Supplementary Fig. 1d,e). We found 
that the cavity restricts the outflow of locally produced C2 species  
(Fig. 1b, arrows), which leads to higher local C2 intermediate con-
centrations inside the cavity (Fig. 1b, colour map). The desorption 
of C2 intermediates is then reduced, which leads to an increased 
surface coverage and residence of the intermediates necessary for 
C3 production, and ultimately generates a heightened C3 produc-
tion rate inside the cavity (Fig. 1c).

In contrast, solid nanoparticles are not predicted to restrict 
materially the transport of C2 reactants away from their surfaces, 
which leads to lower C2:C1 coupling rates (Supplementary Fig. 2a). 
To study the bounds of the cavity-enhancement effect, we quan-
titatively assessed the angular dependence of the nanocavity on 
C2 versus C3 selectivity from fully closed to fully open structures 
(Supplementary Fig. 2). Specifically, we monitored the outflux of C2 
and C3 products from both the interior and exterior surfaces of the 
structures (Supplementary Fig. 3a). The productivity of both species 
in the interior cavity of the particles showed a strong dependence on 
the opening angle, in strong contrast to that at the exterior surfaces 
(Supplementary Fig. 3b–d). At small opening angles (<​30°), C2 and 
C3 productivities are low as the CO reagent transport into the cavity 
is unduly restricted, which results in CO limitation. At large open-
ing angles (>​180°), the cavity does not succeed in containing the 
generated C2, and exhibits a lower C3/C2 selectivity than all the 
other cases. At intermediate angles (45–90°), the C3/C2 selectiv-
ity and overall C3 productivity appreciably exceed those found in 
the comparison cases (Fig. 1d and Supplementary Table 1), with a 
maximum at ~60°. The interior and exterior in these cases produce 
a similar amount of total C2 +​ species (the sum of C2 and C3)—it is 
the ratio of C3 to C2 that is appreciably higher for the cavity interior. 
In these cases, the enrichment of C2 is not restricted by the reduced 
CO influx, which results in an approximate 2.8-fold enhancement 
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Fig. 1 | Computed concentration and flux distribution of species. a–c, CO (a), C2 (b) and C3 (c) concentrations (colour scale, in millimoles) and flux 
distributions (arrows) on the cavity confinement structure. d, Ratio of C3/C2 productivity, measured by the total outflux of C2 and C3 products, as a 
function of cavity open angle. e, The schematic shows how the cavity confinement effect promotes C2 species binding and further conversion to C3.  
*The surface species. f, Energy profile of the C3 formation intermediate. The geometries of intermediate states and transition states are shown as insets 
(only the CO species in the reaction are illustrated). Red, oxygen; grey, carbon; orange, copper.
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of C3/C2 production for this optimized cavity opening. Altogether, 
these simulations point to a nanocavity intermediate confinement 
as a promising means to enhance the production of higher carbon 
products (Fig. 1e).

We also calculated the formation of C3 on Cu(111) using den-
sity functional theory (DFT) including C1:C1 and C1:C2 coupling 
steps20. C2 formation is first calculated based on the dimerization 
of CO (Fig. 1f, Supplementary Fig. 4 and Supplementary Table 2)19.  
In CO reduction, CO is abundant on the surface owing to the strong 
adsorption energy of CO compared to that of CO2; thus, the C2 and 
CO coupling was assumed to be one of the most likely pathways 
for C3 formation (Fig. 1f, Supplementary Fig. 5 and Supplementary 
Table 2). Our calculations suggest that the coupling of C2 with a CO 
is favourable both thermodynamically and kinetically. The findings 
also suggest that the low stability of the C2 species will lead to a low 
C2 surface coverage, a fact that reduces the likelihood that CO and 
C2 will meet to form C3; this accounts for the need to concentrate 
the C2 species via the nanocavity strategy.

Catalyst preparation and characterization. We sought, therefore, 
to fabricate a tunable nanocavity copper catalyst. We first synthe-
sized Cu2O nanoparticles (with average sizes of 110 ±​ 20 nm, com-
parable to the scale of simulations) via the nucleation and growth 
of nanocrystals24. By applying a gentle acidic etching technique, we 
then produced open structures, controlling the size of the hole via 
exposure time25 (details in Methods). We characterized the result-
ing Cu2O particles using scanning electron microscopy (SEM), 
and witnessed an open morphology in the majority of nanopar-
ticles (Fig. 2a). We further characterized the particles via scanning 
transmission electron microscopy annular dark field (STEM-ADF),  
the corresponding fast Fourier transform (FFT) and energy-
dispersive X-ray spectroscopy (EDS) mapping (Fig. 2b,c and 
Supplementary Fig. 6a).

After the synthesis, we deposited the Cu2O particles onto a car-
bon substrate, and then produced the final nanocavity Cu catalyst 
(Fig. 2d) via an in situ CO electrochemical reduction. SEM and 
TEM images confirmed that the catalyst produced after the CO 
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reduction reaction (CORR) retained the particle size and the open 
morphology of the original Cu2O, whereas the material structure 
had been electrochemically reduced to pure Cu, as demonstrated 
by STEM-ADF, FFT, TEM, STEM and EDS mapping (Fig. 2e–k and 
Supplementary Figs. 6b,c and 7).

To characterize the in situ electroreduced electrodes and gain an 
insight into the chemical state of the active catalyst, a series of spec-
tral measurements were made on the as-prepared and electrochem-
ically derived samples. The spectra of Cu 2p and Auger Cu LMM 
conducted by X-ray photoelectron spectroscopy, taken together, 
show the valence state transition from Cu+ to Cu0 (Fig. 3a,b). We 
used powder X-ray diffraction and grazing incidence wide-angle 
X-ray scattering to confirm the phase change from cuprite Cu2O to 
cubic Cu (Fig. 3c–e).

The Cu K edge X-ray absorption near-edge spectra and the 
extended X-ray absorption fine structure of the catalyst and cor-
responding reference standard materials demonstrated that the 
Cu2O was reduced to Cu in less than 100 seconds after the reaction,  
which reconfirms that the final nanocavity catalyst is metallic Cu 
(Fig. 3f,g).

Taken together, these studies (Figs. 2 and 3 and Supplementary 
Fig. 8) indicate that this feature of the Cu nanocavity catalyst is, 
regardless of other established factors, known to influence the ele-
troreduction performance, such as oxidation state26, Cu defects27, 
oxygen doping28 or grain boundary density29, as documented in 
prior studies.

Electrochemical CO reduction performance. We then explored 
the CORR activity of the Cu catalysts derived from the solid, cavity 
I, cavity II and fragment morphologies (Fig. 4d and Supplementary 
Fig. 9). We deposited the catalyst onto a carbon gas-diffusion  

electrode via spray coating of a material ink (Methods) and tested the 
samples in an engineered flow-cell configuration (Supplementary 
Fig. 10). Compared to conventional hydrogen cells, the flow cells 
with gas-diffusion electrodes increased the gas reactant availability 
at the electrode surface30.

The current density recorded on the cavity II sample was larger 
than those of other opening angles at the same applied potential 
(Fig. 4a). Once normalized by the electrochemical surface area 
(Supplementary Fig. 11a–i), the current densities presented simi-
lar values (Supplementary Fig. 11j,k) across samples and across 
the potential range applied. We concluded that the overall activity 
towards the CORR is substantially independent of the cavity mor-
phology, and thus turned our attention to the selectivity.

We evaluated the electrocatalytic CO reduction performance in 
the potential range of −​0.36 V to −​1.76 V versus the RHE in 1 M 
KOH solution. Propanol was detected using 1H NMR spectroscopy. 
The cavity II nanocatalyst showed the highest Faradaic efficiency of 
propanol compared to the other samples over the entire potential 
range, which demonstrates the structural effect of cavity confine-
ment on the propanol selectivity. As Cu is an electrical conductor, 
the cavity structures are not expected to introduce a difference in 
the electric potential over the entire surface (including the interior 
and the exterior) of the cavity (Supplementary Fig. 12 gives the 
modelling result). At −​0.56 V versus RHE, the Faradaic efficiency 
for propanol in the cavity II sample reaches 21 ±​ 1% (Fig. 4b) with 
a partial current density of 7.8 ±​ 0.5 mA cm−2 (Supplementary  
Table 3). We compare in Supplementary Table 4 this performance 
with that of catalysts previously reported in the published literature.

The carbon-based product distribution, obtained using NMR 
spectroscopy (Supplementary Fig. 13a) and gas chromatog-
raphy, which included C2 (acetate, ethanol and ethylene) and  
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propanol from the cavity II nanocatalyst, is shown in Fig. 4c. 
Supplementary Table 5 compares cavity II with the solid, cavity I 
and fragment controls.

The nanoconfinement of carbon-based intermediates within the 
cavity structures of Cu catalysts (Fig. 4d) enabled a shift of prod-
uct selectivity to C3 propanol. The combined product distributions 
at the optimized applied potential of −​0.56 V versus RHE (Fig. 4e) 
show that the increased propanol production in the cavity II struc-
ture corresponds to a decreased ethylene formation, with the mix 
of acetic acid and ethanol remaining similar to that of the other 
catalyst structures. These results indicate that the C2 intermedi-
ate for propanol production via C–C coupling with CO inside the  
cavity is related to the ethylene, in agreement with previously 
reported mechanisms for propanol production11,31, and as modelled 
in the FEM simulations here. We examined the performance and 
structure change of the catalyst with time evolution (Supplementary 
Figs. 13b,c and 14). After two hours of testing, the catalyst recon-
structed to form aggregated Cu particles (Supplementary Fig. 14d–f) 
that decreased the Faradaic efficiency of propanol from 21% to 14% 
and shifted the selectivity from C3 to C2 products (Supplementary 
Fig. 13c). This result further confirms the nanocavity scenario as the 
source of the high C3 content.

We compared the experimental and simulated ratio of C3/C2 
products. The FEM model qualitatively agrees with the experimen-
tal data in terms of the best geometry for C3 production, regardless 
of the adsorption/desorption equilibrium constants and reaction 
rate constants used in the model (Supplementary Figs. 15–18). The 
FEM results can be further fitted to the experimental data to obtain 
qualitative agreements between the two (Fig. 4f) and the resulting 
parameters follow the trend predicted by the DFT calculations. This 
relatively simple model captures the key transport and geometric 
aspects of the nanocavities and provides a physical picture of the 
diffusive trapping of C2 intermediates and the resulting enhance-
ment in C3 production.

Conclusions
This work provides a catalyst structuring approach wherein the 
desired intermediates are concentrated to direct selectivity along a 
desired reaction pathway. FEM simulations, material structure char-
acterization and electrochemical measurements attest to the role of 
the nanocavity catalyst in improving the catalytic performance and 
directing electrons to higher carbon products. These findings pro-
vide a physical route to tuning chemical selectivity and enabling the 
electroproduction of renewable liquid fuels and feedstocks.

Methods
FEM simulations. FEM simulations were performed using the COMSOL 
Multiphysics software package (https://www.comsol.com/). Three modules 
were used to establish a comprehensive chemistry–mass transport model of the 
nanocavity structure32–34. Supplementary Methods gives detailed information 
regarding the FEM simulations.

DFT calculations. In this work, all the DFT calculations were carried out with 
a periodic slab model using the Vienna ab initio simulation program (VASP) 
(https://www.vasp.at/). Supplementary Methods gives detailed theoretical methods.

Initial Cu2O nanoparticles synthesis. We synthesized Cu2O nanoparticles, which 
included the solid, cavity I, cavity II and fragment morphologies, according to 
a previously reported method24. In a typical procedure, 4.5 g of sodium dodecyl 
sulfate was dissolved in 450 ml of distilled water in a glass reactor, and then 65 mg 
of CuCl2 added. After that, 22.5 ml of a hydroxylamine hydrochloride (310 mg) 
solution and 4.5 ml of a 2 M HCl solution were injected into the reactor. Next, 
12.5 ml of a NaOH (500 mg) solution was quickly added into the solution. We aged 
the solution at room temperature for 3 h to prepare the cavity I morphology, 5 h to 
prepare the cavity II morphology and 9 h with 6 ml of HCl to prepare the fragment 
morphology. The solid Cu2O was synthesized from the above procedure but 
without adding HCl and by ageing for 3 h.

Derived Cu nanocatalyst synthesis. We prepared the derived Cu nanocatalyst 
electrode with different morphologies via in situ CO electroreduction from the 

corresponding initial Cu2O electrode, and they were obtained after an initial 
running (2–5 min).

Electrochemical measurements. Electrocatalytic measurements were carried out 
in a three-electrode system using an electrochemical station (AUT50517). All the 
potentials were measured against an Ag/AgCl reference electrode (3 M KCl, BASi) 
and converted to the RHE reference scale using:

= ∕ + . + . ×E E(versus RHE) (versus Ag AgCl) 0 197 V 0 0591 pH (1)

CO reduction product analysis. Gas-phase and liquid-phase products were 
quantified by gas chromatography and NMR spectroscopy, respectively.

The gas chromatography, running argon (Linde, 99.999%) as a carrier 
gas, contained a molecular sieve 5 A and Carboxen-1000 columns. A thermal 
conductivity detector was used to quantify hydrogen and a flame ionization 
detector was used to quantify ethylene.

The liquid products were quantified using NMR spectroscopy. 1H NMR spectra 
of freshly acquired samples were collected on an Agilent DD2 500 spectrometer 
in 10% D2O using a water suppression mode, with dimethyl sulfoxide as an 
internal standard. A relaxation time of 16 s between the pulses was used to allow 
for complete proton relaxation. The Faradaic efficiency of the liquid products 
was calculated from the total amount of charge Q (coulombs) passed through the 
sample and the total amount of the liquid products produced n (moles). Q =​ I ×​ t, 
where I (amperes) is the reduction current at a specific applied potential and t (s) is 
the time for the constant reduction current.

The Faradaic efficiency (FE) of the liquid products can be calculated as:

= × × = × ×
×

F
n

Q
F

n
I t

FE 12 12
( ) (2)PrOH

PrOH PrOH

where F is the Faraday constant.

Working electrode preparation and CO reduction measurements. To prepare 
a catalyst coated in a flow cell system, we deposited 10 mg of catalyst mixed 
with 20 μ​l of 5 wt% Nafion in 1 ml of methanol on a carbon gas-diffusion 
layer, ~1 mg cm−2, using an airbrush. We combined the diffusion-layer-
coated catalyst, anion exchange membrane and nickel anode together using 
polytetrafluoroethylene spacers such that a liquid electrolyte could be introduced 
into the chambers between the anode and membrane as well as the membrane 
and the cathode. Gaseous CO was passed through the gas chamber at the back 
side of the gas diffusion-layer-coated catalysts. The electrolytes (20 ml of KOH 
solution of various concentrations) were circulated through both the anode and 
cathode chambers. The electrolyte flow was kept at 10 ml min−1. The CO (Linde, 
99.99%) flow was kept constant at 50 ml min−1 using a mass flow controller.

Electrochemical active surface area measurement. Surface roughness factors for 
the four catalytic electrodes relative to the polycrystalline Cu foil were estimated 
from double layer capacitances (Cdl)35. Cdl was determined by measuring the 
geometric current at a potential window at which no Faradaic process occurred 
as a function of the scan rate of the cyclic voltammetry stripping. For this, cyclic 
voltammetry was performed in a 1 M KOH electrolyte with an anion exchange 
membrane. The potential window was between 0.19 V and 0.26 V versus RHE. The 
scan rates were from 40 mV s–1 to 160 mV s–1 with an interval of 20 mV s–1. Cdl was 
estimated by plotting the △​j =​ (ja – jc)/2 at 0.225 V versus RHE (where ja and jc are 
the anodic and cathodic current densities, respectively) against the scan rate. The 
slope gives the Cdl value.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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